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Abstract— High secure cryptographic systems require large
bit-length encryption keys which presents a challenge to their
efficient hardware implementation especially in embedded de-
vices. Modular multiplication is the core operation in well known
cryptosystems like RSA and Elliptic Curve (ECC). Therefore, it
is important to employ efficient modular multiplications tech-
niques to improve the overall performance of the cryptographic
system. We present a modular multiplier based on the ordinary
Montgomery’s multiplication algorithm and a new array multi-
plication scheme to perform the multiplication. The new modular
multiplier is scalable and can be used for large bit-lengths. We
also implement the modular multiplier into the Virtex4 FPGA
devices and we show that our technique has better performance
when compared with other schemes. To implement large bit-
length multiplications we used a novel partitioning and pipeline
folding scheme to fit at least 512-bit modular multiplications on
a single FPGA.

I. INTRODUCTION

Modular multiplication, i.e., regular multiplication
mod N , is employed in widely used cryptosystems such as
the Rivest-Shamir-Adleman (RSA) [1] and the Elliptic Curve
[2] systems. These schemes require large size multiplications
in terms of bit-length, say larger than 128 bits, to ensure
secure operation. Hardware implementation of these schemes
improves performance at the expense of area cost due to the
multiplication size.

Among the many proposed modular multiplication
algorithms, Montgomery’s modular multiplication [3] is
the most efficient since it replaces the trial division by the
modulus with a series of additions and division by a power of
two [4]. Unlike other approaches such as [5], which is based
on lookup tables, the computation in Montgomery’s algorithm
proceeds from the least significant to the most significant
digit. This advantage makes Montgomery’s multiplication
algorithm very efficient for hardware implementation [6].
However, the demand on high security requires very large
bit-length operands making efficient hardware design a big
challenge.

In many of the modular multiplication algorithms such as
those in [4], [7] and [8], the regular multiplication operation
is the most demanding among all the operations. Thus, the
design of an efficient regular multiplier will have the greatest
impact on the overall performance of the modular multiplier

especially when operand size is very large (≥ 128 bits in
Elliptic Curve Cryptography, up to 2048 bits in RSA).
A large bit-length multiplier to be used in cryptography should
meet the following criteria:

• Adaptability: The multiplier should be bit-length scalable
and not fixed. Scalability can be achieved by reconfigura-
bility on the fly, which is the major advantage of FPGAs.

• Performance: The multiplier should be very fast to im-
prove the overall performance of the system. This can be
achieved by using a fast multiplier architecture.

• Small size: The multiplier should have a reasonable size
that can fit in one FPGA and permit for other components
in the system to fit in as well. If the size is very large then
more than one FPGA will be needed for the entire system.
This means more cost and less performance because of
signals going out of chip.
There should be a way to control the size of the multiplier
as the bit-length increases. One way to achieve this is by
effective partitioning.

In this work, our goal is to build a scalable modular multi-
plier that can be used in cryptography applications. We employ
a modular multiplication algorithm that has been proposed in
literature and we propose a modular multiplication architecture
that we use to implement this algorithm. However, regular
multiplications of large bit-length operands are essential in the
algorithm. Thus, we have developed a novel large scale radix-
4 multiplexer-based array multiplier, and we use it to perform
the multiplication operation in the architecture. We tested the
performance of the proposed multiplication scheme by map-
ping different bit length operands into the FPGA. We used the
same FPGA devices to map our scheme and the multiplexer-
based array multiplier for k-bit lengths of 16, 32, 64 and 128.
Our multiplier shows better performance over a multiplexer-
based array multiplier proposed in the literature with minor
size penalty. We implemented the modular multiplier shown
in Figure 1 in Xilinx FPGA devices, and we compared the
results of 128-bit and 256-bit modular multiplier with those
referenced in [4], which is also build based on the ordinary
Montgomery multiplier. Moreover, the new modular multiplier
was implemented in Virtex4 FPGA device for k-bit lengths of
128, 256 and 512. To fit the modular multiplier of large bit-
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length in a single FPGA device, we used a partitioning and
pipeline folding scheme that allowed us to fit at least 512-bit
modular multiplications in a single FPGA.

The rest of this paper is organized as follows:
Section II talks briefly about the encryption and decryption in
RSA. Section III discusses our approach to a modular multipli-
cation architecture using a well known modular multiplication
algorithm. Section IV presents our novel regular multiplication
scheme to build the radix-4 multiplexer-based array multiplier
which is used to perform the multiplication operation in the
modular multiplication architecture, in Section III. Section V
presents the partitioning and pipeline folding technique. We
provide experimental results in Section VI and we conclude
in Section VII.

II. ENCRYPTION/DECRYPTION IN RSA

In RSA, the public encryption key consists of two positive
integers (E, N). A plaintext message P is partitioned into
a sequence of blocks, each of which is M , i.e. an integer
between 0 and N − 1 and is generated by using a padding
scheme. M is then raised to the Eth power modulo N to
obtain the encrypted message C [1], [9] and [10]. On the other
hand, to retrieve the original massage M using the private
decryption key which is another two positive integers (D, N),
the encrypted message C is raised to the Dth power modulo
N . Both the encryption and decryption equations are given
by:

C = ME mod N (1)

M = CD mod N (2)

It is clear from the encryption and decryption equations
1 and 2 that the modular exponentiation is the fundamental
operation for encryption. This operation can be realized by
repeated modular multiplications using the square and multiply
algorithm [11] and [12]. The modular exponentiation is given
in Algorithm 1.

Algorithm 1: Modular Exponentiation
Input : M, E, N
Output: C = ME(mod N)

C ← M ;
for j ← (k − 2) to zero do

C ← C × C(mod N);
if ej = 1 then

C ← C × M(mod N);

return C;

III. MODULAR MULTIPLICATION ARCHITECTURE

In this section we present a modular multiplication
architecture which is based on the ordinary Montgomery’s
modular multiplication algorithm [3] and [6]. We employ
a radix-4 multiplexer-based array multiplier, which is

described in Section IV, to perform the regular multiplication
operation. Since the regular multiplication operation, as
we will see in Section III-A, has main contribution to the
overall modular multiplication algorithm, the performance
of the regular multiplier dominates the performance of the
overall modular multiplier architecture. Thus, we employ a
radix-4 multiplexer-based array multiplier which shows better
performance as compared to other multiplication schemes,
to implement the multiplication operation in the modular
multiplication algorithm.

A. Montgomery architecture

Algorithm 2: Montgomery Multiplier

Input : X, Y, N, N
′
, r

Output: R = X × Y × r−1(mod N)

P ← X × Y ;
t ← P × N

′
(mod r) ;

t ← t × N ;
R ← (P + t) ÷ r;
if R ≥ N then

return R − N ;
else

return R;

The pseudocode in Algorithm 2 presents the ordinary
Montgomery multiplication algorithm [7] and [4]. In this
algorithm, the k-bit integers X , Y and N are the multiplier,
the multiplicand and the modulus, respectively. X and Y are
N -residue with respect to r where r = 2k. The output of the
algorithm is R which is the Montgomery product of X and
Y . R is given by :

R = X × Y × r−1(mod N) (3)

where r−1 is the inverse of r mod N , i.e., r × r−1 = 1(
mod N). The additional quantity N

′
, where r × r−1 − N ×

N
′
= 1, is needed to describe the algorithm [7]. Both r−1 and

N
′

can be computed using the extended Euclidean algorithm
[13] and [7]. As mentioned before, the operand size in cryp-
tosystems is very large to achieve very high security and so a
very large multiplier is needed to perform the multiplication in
Algorithm 2, which involves three multiplication operations,
one addition operation and a conditional subtraction opera-
tion. Thus, the performance of the large multiplier has the
largest impact on the overall performance. Figure 1 shows
the block diagram of the Montgomery modular multiplier
architecture that we built based on Algorithm 2. The large
multiplier in the architecture, which is implemented using
radix-4 multiplexer-based array multiplication scheme, gives
the architecture two main advantages. The radix-4 multiplexer-
based array multiplier shows better performance than other
multiplication schemes as we will see in Section IV and VI
and so the performance of the overall modular multiplier is
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Fig. 1. Montgomery architecture

improved. Moreover, as we will see in Section V, the structure
of the radix-4 multiplexer-based array multiplier is amenable
to implementing the multiplier in a folded pipeline within one
FPGA device as the size of the operands increase to the limit.
This occurs when the multiplier does not fit in the FPGA
device if implemented with the normal way without using the
folded pipeline technique.

IV. RADIX-4 MULTIPLICATION SCHEME

In this section, we, briefly, introduce our multiplication
scheme that we use to develop the multiplier. We present
the derivation of the equations and a parallel multiplier
architecture that employs this scheme in [14].

A. Multiplication scheme

Assume two k-bit (k is even) numbers X and Y such that

X = xk−1xk−2xk−3xk−4.....x2x1x0 (4)

Y = yk−1yk−2yk−3yk−4.....y2y1y0 (5)

Assume Xk−3,k−4 and Yk−3,k−4 are new numbers that are
generated by truncating the most two significant bits in X and
Y respectively. Then

Xk−3,k−4 = xk−3xk−4.....x2x1x0 (6)

Yk−3,k−4 = yk−3yk−4.....y2y1y0 (7)

X and Y can be rewritten as follow

X = 2k−1xk−1 + 2k−2xk−2 + Xk−3,k−4 (8)

Y = 2k−1yk−1 + 2k−2yk−2 + Yk−3,k−4 (9)

If we define the product of X and Y as P then we can write
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Fig. 2. Schematic illustration of the multiplication algorithm

P = XY =
{2k−1xk−1 + 2k−2xk−2 + Xk−3,k−4} ×
{2k−1yk−1 + 2k−2yk−2 + Yk−3,k−4} (10)

The expansion of equation 10, taking into consideration that
we are processing two bits from each operand at a time as in
equations 8 and 9, will lead to the general equation 11 for
calculating the product P = XY .

P = XY = A + B + C (11)

Where

A =
(k−2)/2∑

i=0

{22(2i+1)x2i+1y2i+1 + 22(2i)x2iy2i} (12)

B =
(k−2)/2∑

i=0

{22(2i)+1{x2iy2i+1 + x2i+1y2i}} (13)

C =
(k−2)/2∑

i=1

{c1 + c2} (14)

c1 = 22i{x2iY2i−1,2i−2 + y2iX2i−1,2i−2} (15)

c2 = 22i+1{x2i+1Y2i−1,2i−2 + y2i+1X2i−1,2i−2} (16)

Equation 11 describes a multiplication algorithm and is
schematically illustrated in Figure 2. The solid lines connect
the partial product bits to distinguish the partial product bits
group. If we fold the array in Figure 2 along the diagonal, the
multiplication algorithm given by equation 11 can be derived.

We derived general equations to calculate the number of
each type of the basic cells for k-bit multiplier. We also derived
equations to calculate the number of gates and the number of
transistors to be used in building k-bit multiplier. The gate
and transistor equations in Table II are derived based on the
number of each type of the cells, cell complexity, gates count
and transistors count from Table I taken from [15] and [16]



for fair comparison purposes. And then we compared the cell
count, the cell complexity, the gates count and the transistors
count of the multiplier with those from various multipliers.
Our multiplier scheme uses 8.5k2 + 219k gates which is
less than the number of gates in the iterative array, the 5-
COUNTER cell multiplier and the modified Booth’s algorithm
in columns two, three and four respectively. The multiplexer-
based array multiplier has almost similar gate count dominated
by 8.5k2. This is also true for the transistor count. However,
the experimental results section will show that our scheme is
faster than the multiplexer-based array scheme, which is faster
than the other three schemes.

Circuit Gates Transistors

Full-Adder 12 26

4×1 Mux 5 16

Half-Adder 5 10

XOR Gate 4 6

2-bit CLA 23 50

2×1 Mux 3 6

TABLE I

NUMBER OF GATES AND TRANSISTORS FOR VARIOUS TYPE OF CIRCUITS

V. IMPLEMENTATION USING PARTITIONING AND FOLDED

PIPELINE

Partitioning is needed whenever the size of the circuit
of the multiplier is large to fit in the FPGA device. The
partitioning process is done in a way to have a main partition
and other secondary partitions. The main partition is reused
to implement any secondary partition by reconfiguring
the main partition through control signals. The number
of partitions depends on the size of the FPGA device
being used and the size of the circuit. The size of the main
partition should fit within the FPGA resources. The number of
partitions are adjusted until the circuit fits in the FPGA device.

Reusing the main partition can be done by buffering and
feeding back the intermediate outputs to the inputs of the
main partition, as shown in Figure 3. Multiplexing circuit
should be used to choose between the startup inputs and the
intermediate outputs. Also, multiplexing is used, during the
reuse of the main partition to implement a secondary partition,
to isolate any unused component. The multiplexing circuits
are controlled by configuration signals that are generated by a
control unit. The intermediate feedback outputs are registered
by clocked registers.

In this work, the targeted FPGA was Vertex4 FPGA device.
We could map the multiplier for up to 128-bit without any
need to partition the circuit. However, we had to partition the
circuit for higher bit-length. In order to partition the circuit,
we first group the basic four cells into two different groups
(group A and group B) as shown in Figure 4(a) and 4(b).

Main Partition

Control
Unit

Input XInput Y

Product P

zeros

zeros

buffer

Group output
inc

CSAs

Fig. 3. The overall folded pipeline circuit

(a) Group A (b) Group B

Fig. 4. The grouping

We begin with a 32-bit unpartitioned example shown in
Figure 5 where the groups, A and B, are represented by
symbols. Group A is represented by an empty circle and
group B is represented by a full circle. The CSAs and the
connections between the groups are not shown for clarity.
To demonstrate the partitioning process in this example, the
multiplier was partitioned into four partitions. It turned out
that the multiplier can easily be partitioned into different
partitions, where the secondary partitions are subsets of the
main partition. By having the secondary (i.e. second, third
and fourth in Figure 6) partitions being subsets of the main
partition, the multiplier has the advantage that the main
partition can be reused to implement any of the secondary
partitions. The control unit sends configuration signals to
control the multiplexing circuits. The four partitions, for this
32-bit example, are shown in Figure 6.

Fig. 5. 32-bit example using cell groups (Group A: empty circle, Group B
: full circle)



Multiplier Iterative 5-COUNTER Modified Booth’s Multiplexer-based Ours

Type Array Cell Algorithm Array

Number Of k2 k(k + 1)/2 CELL A: (k + 1)2/2 CELL I: k(k − 1)/2 Cell1: k(k − 2)/4

Basic Cells CELL B: (k + 1)/2 CELL II: k Cell2: k/2

CLA-2: k Cell3: k/2

Cell4: k/2

CSA-4: 4k/2

CELL 1 Gated FA 2 Gated FA CELL A: 2x1 MUX, CELL I: 4x1 Mux, 1 FA Cell1: 2(4x1 Mux), 2 FA

Complexity 5 Gates, 1 FA CELL II: 2 Gates, 2 FA Cell2 : CSA-2, 2 FA, 3 Gates

CELL B: 6 Gates, 2 FA CLA-2: 23 Gates Cell3: 4x1 Mux, 2 FA, 2 Gates

Cell4: 1 FA, 1 Gate

CSA-4: 46 Gates

Gate 13k2 13(k2 + 3k − 2) 10k2 + 23k + 13 8.5k2 + 40.5k − 34 8.5k2 + 219k

Number

Transistor 30k2 30(k2 + 3k − 2) 21k2 + 52k + 31 21k2 + 89k − 73 21k2 + 487k

Number

TABLE II

CIRCUIT COMPARISON OF THE VARIOUS MULTIPLIERS

Fourth Partition

First Partition (Main Partition)

Second Partition

Third Partition

Fig. 6. The four partitions of the 32-bit example

The main partition as well as the secondary partitions are
implemented in a folded pipeline scheme within the FPGA
device. That is, each partition is instantiated by reconfiguration
of the main partition, which is nothing but generating the
configuration signals to control the multiplexing circuits. The
overall pipeline folding circuit is shown in Figure 3.

VI. EXPERIMENTAL RESULTS

We used the Virtex4 FPGA device to implement the modular
multiplier of Figure 1 for different bit-length of 128, 256 and
512. In Table III we listed the number of slices, the number
of LUTs and the critical path delay for each case. Table III
also shows the ratios percentage of the number of the slices
and the LUTs in the regular multiplier to those in the modular
multiplier. These ratios show that the regular multiplier has
the largest contribution to the overall circuit.

We tested the performance of the proposed multiplication
scheme by mapping different bit lengths to the FPGA. We
used the same FPGA devises to map our scheme and the

Critical

k Slices LUTs Path Slices LUTs

Delay Ratio% Ratio%

128 20827 31489 195.387ns 97.5 % 98.4%

256 34345 65178 400.184ns 97.0 % 98.4%

512 73629 139611 987.000ns 97.2 % 98.5 %

TABLE III

RESULTS FOR 128-BIT, 256-BIT AND 512-BIT MODULAR MULTIPLIERS

multiplexer-based array multiplier for k-bit lengths of 16, 32,
64 and 128. Our multiplier shows better performance over the
multiplexer-based array multiplier with minor size penalty.
We summarized the results in Table IV. In [16], it is shown
that the multiplexer-based array multiplier is faster than other
multiplication schemes. This means, the proposed multiplier
is faster than those multiplication schemes.

We implemented the modular multiplier in Figure 1 using
the Xilinx FPGA devices, and we compared the results of 128-
bit and 256-bit modular multiplier with those from [4], which
is also build based on the ordinary Montgomery multiplier.
In the case of 128-bit, for a fair comparison, we used the
same FPGA device that was used by [4]. However, for the
256-bit case we used slower version of the same device. In
both cases our modular multiplier showed better performance.
These comparisons are given in Table V.



Multiplexer-based The proposed

k array multiplier[16] array multiplier

Critical Critical Speed

Slices LUTs Path Delay Slices LUTs Path Delay Up%

16 329 479 20.552ns 714 1233 19.480ns 5.5%

32 1177 2264 40.254ns 1978 3121 25.709ns 56.58%

64 4769 8310 74.643ns 6043 9345 37.616ns 98.43%

128 18964 33014 155.483ns 20315 30977 61.277ns 153.74%

TABLE IV

COMPARING OUR MULTIPLIER WITH THE MULTIPLEXER-BASED ARRAY MULTIPLIER[16]

Modular multiplier in[4] Modular multiplier in Figure1

k XC2V Critical Path XC2V Critical Path Speed

FPGA device Delay FPGA device Delay UP%

128 P50-7-ff1517 343.8ns P50-7-ff1517 272.8ns 26.0%

256 P125-7-ff1696 700.5ns P100-6-ff1704 636.3ns 10.1%

TABLE V

COMPARING MODULAR MULTIPLIER IN FIGURE 1 WITH [4]

VII. CONCLUSION

Modular multiplier with operands of very large bit-length
is needed in cryptosystems. In modular multiplication algo-
rithms, like the ordinary Montgomery’s multiplier, multipli-
cation is the main operation. To improve the performance
of the overall cryptosystem, the modular multiplier should
be scalable, small in area and fast. We proposed a modular
multiplier to be used in cryptosystems. Our modular multiplier
employs a new multiplication scheme, which is based on radix-
4 multiplexer-based arrays, to perform the regular multipli-
cation operation. The new modular multiplier showed better
performance over other schemes when mapped to Virtex4
FPGA devices. We mapped the modular multiplier to the
Virtex4 FPGA devices for key length of 128, 256 and 512.
To fit the large modular multiplier in a single FPGA, we used
a novel partitioning and pipeline folding scheme that allowed
us to fit at least a 512-bit modular multiplier in a single FPGA.
To fit modular multipliers of operands with larger bit-lengths,
the number of partitions can be adjusted.
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