
 
 

Abstract — Traditional level-one instruction caches and data 
caches for embedded systems typically have the same capacities. 
Configurable caches either shut down a part of the cache to suit 
applications needing a small cache or employ a large cache and 
high associativity for applications needing to reduce miss rate and 
energy. However, increasing associativity is energy-costly 
compared with increasing capacity.   

We have extended the traditional configurable cache and made 
the whole on-chip cache memory capacity available to both 
instruction and data caches. The capacity can then be co-allocated 
between the data and the instruction caches. Compared with way 
shutdown and way concatenation, the capacity co-allocation cache 
provides a better solution than increasing associativity. Four out 
of 17 benchmarks from Mibench benefit from the capacity co-
allocation cache.  Energy reduction can be up to 24%, with an 
average of 5%, compared to a traditional configurable cache.  

1 Introduction 
Reducing power consumption of embedded processors is an 

increasingly important task for battery-powered embedded 
computing systems. Cache memories consume about 40% 
[8][16] of the total power in these systems. Power efficient 
cache architecture is a critical issue in the design of 
microprocessors for embedded computing systems. 

Accessing off-chip memory is time consuming and not 
energy efficient due to high driving capacitance and the need 
for large amounts of memory storage. Reducing the miss rate 
of level-one caches for embedded systems can reduce the 
number of accesses to off-chip memory and greatly reduce 
power consumption. Processors for embedded computing 
systems typically do not have a level-two cache, which is 
widely available for high performance processors. 

Cache size is important in determining the miss rate and 
power consumption. Large sized caches reduce miss rate and 
accesses to off-chip memory and buses but consume higher-
per-cache access energy. Small sized caches have a low-per-

access energy but may exhibit high miss rate and increase 
accesses to off-chip buses and memory. Therefore, a small 
sized cache may or may not result in the least overall energy 
consumption for a particular application. 

Since an embedded system typically executes just one or 
several fixed sets of applications for the system’s lifetime, 
several configurable cache architectures have been proposed to 
tune the cache to those applications. Cache parameters, such as 
cache size [1], associativity [16], line size [17], replacement 
policy, and buffers [11], can be set to suit a particular 
application to achieve overall good performance and consume 
less energy. 

 Embedded systems use the same sized separate data and 
instruction cache, even though the requirements for data and 
instructions are totally different. Some applications require a 
large data cache while others may require a large instruction 
cache. To accommodate more applications, cache capacities are 
typically designed as large as possible. To exploit this cache 
design, several low power cache schemes, such as way shut 
down, drowsy cache [6], and cache decay [9], have been 
proposed to reduce both dynamic and static energy for a 
particular application through shutting down or putting a part 
of the cache memory into a low power drowsy or decay state.  

Some applications, however, may need a larger cache than is 
available. Way concatenation [16] can be used to increase the 
associativity of caches, since high associativity can further 
reduce miss rate but with higher power cost. 

Increasing cache capacity and associativity can reduce miss 
rate; however, the energy cost of increasing cache capacity and 
associativity is different. Figure 1 shows the energy 
consumption of caches at varied sizes and associativities [13]. 
An 8kB direct-mapped cache consumes less power than a 4kB 
cache at 2-way and 4-way associativities and exhibits a similar 
miss rate to a 4kB 2-way cache [18]. Therefore, increasing 
cache size should be employed first before increasing 
associativity [18].  

Based on the above observation, we propose to extend the 
configurable cache, so the capacity of cache memories can be 
co-allocated between data and instruction caches. We call it 
Capacity Co-allocation Configurable Cache. For example, one 
application may need only a small data cache but an instruction 
cache larger than the maximum available. We can allocate the 
memory space from the data cache to the instruction cache 
without shutting down part of the data cache. We do not need 
to increase associativity of the instruction cache and can 
achieve lower overall energy consumption. This is doable, 
since in an embedded system, data and instruction caches are 
laid side by side [14]. This is different than in high 
performance processors where data and instruction cache are 

A Capacity Co-allocation Configurable Cache 
for Low Power Embedded Systems 

Chuanjun Zhang 
Department of Computer Science and Electrical Engineering 

University of Missouri-Kansas City 
zhangchu@umkc.edu  

 

0.0

0.3

0.5

0.8

1.0

2k
_4
w

4k
_2
w

8k
_1
w

4k
_4
w

8k
_2
w

16
k_
1w

8k
_4
w

16
k_
2w

32
l_
1w

 
Figure 1: Energy consumption per cache access at varied cache 
sizes and associativities. k stands for kB and w stands for way, 
e.g. 2k_4w means a 2kB cache with associativity of 2-way. 

En
er

gy
(p

J)
 

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE



 
 

set apart, making cache capacity co-allocation difficult [10].  
The rest of this paper is organized as follows. In Section 2, 

we review the related work. Section 3 describes the base cache 
architecture. We describe the design of the capacity co-
allocation cache architecture in Section 4. Experimental results 
are presented in Section 5. We analyze the capacity co-
allocation cache in Section 6 and conclude in Section 7. 

2 Related Work 
Both cache size and associativity can be reconfigured to suit 

varied applications in a highly configurable cache [16]. The 
reconfigurations of the instruction and the data caches are done 
independently and the size of both the instruction and the data 
caches can only be reduced from their maximal sizes. When 
one application needs a larger cache size than the maximum 
available in the configurable cache, associativity has to be 
increased to reduce the miss rate. Zhang, et.al, shows that 
increasing cache size is more efficient in terms of energy 
reduction than increasing associativity [18].  

The way shut-down technique [1] reduces the cache capacity 
through shutting down the cache ways. These techniques are 
useful when extra cache capacity is available on chip. Our 
technique provides a better scheme so that the cache capacity 
can be co-allocated between the data and the instruction caches. 
There are more cache configurations in the proposed cache. For 
example, an existing highly configurable cache [16] with an 
8kB data and instruction cache has a total of six possible 
configurations each, as shown in Table 1. However, the 
proposed cache can have 12 possible configurations for each 
cache. Some configurations, such as a data cache size of 12 kB, 
is possible only when the instruction cache size is less than or 
equal to 4kB. 

Drowsy-cache [6] and cache-decay [9] adaptively put cache 
sets into a drowsy or decay state, so leakage can be reduced 
without significantly sacrificing performance. This means the 
cache capacity has not been used efficiently. 

In semi-unified cache [4], the level-one data and instruction 
cache can be used as a backup of each other. Both the 
instruction and the data addresses are fed to the cache memory. 
When both the instruction and the data are directed to the same 
cache memory, a conflict occurs that cause one activity to wait 
for extra cycles to proceed. The proposed cache can only be 
used for either instruction or data, so the extra cycles can be 
avoided. 

The CAM-based Highly Associative Cache (HAC) [5][13] is 

specifically designed for low power embedded systems. The 
CAM-based HAC reduces energy consumption through two 
main organizational techniques among many others. One 
method is to aggressively partition the cache memory into 
small subbanks. The small size of the subbanks reduces the 
energy per cache access. The other is high associativity; 
typically a 32-way cache is implemented on one subbank. High 
associativity greatly reduces the miss rate and the accesses to 
the off chip buses and memory. Compared with the HAC, the 
proposed cache does not require CAM.  

3 Base Configurable Cache Organization 
  The proposed capacity co-allocation of level one cache is 

based on the highly reconfigurable cache proposed in [16], 
whose organization is shown in Figure 2 (only two ways are 
drawn to save space). The baseline uses a direct mapped cache 
of 8kB and a line size of 32 bytes. 

  The baseline exploits two techniques, namely way 
concatenation and way shut down. Way concatenation can be 
used to reconfigure the cache associativity, e.g., the baseline 
can be configured as direct-mapped, two-way, or four-way set 
associative cache. Way shutdown is used to reconfigure the 
cache size, which can be of 8, 4, and 2 kB. The cache size, 
however, cannot be larger than 8 kB, even though one of the 
caches, (such as data cache) may need only 2 kB. The 
maximum size of the instruction cannot be increased larger 
than 8kB. The capacity of the total cache cannot be used 
efficiently. The proposed cache can avoid this situation, and the 
cache capacity can be fully exploited to efficiently reduce the 
total energy consumption. We will extend the baseline to co-
allocate capacity between data and instruction caches and to 
which we will compare our results. 

The following is a brief explanation of the operation of the 
baseline. Details about the baseline can be found in [16]. F0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Organization of the baseline highly configurable 
cache proposed in [16]. 

Table 1: Possible Cache Configurations. 
Highly Configurable Cache 

 
D$ (6 possible configurations) I$ (6 possible configurable) 

Size (kB) 2 4 8 2 4 8 

Assoc. 1 1,2 1,2,4 1 1,2 1,2,4 
    

Capacity Co-allocation Configurable Cache 
 

D$ (12 possible configurations) I$ (12 possible configurations) 

Size(kB) 2 4 8 12 14 2 4 8 12 14 

Assoc. 1 1,2 1,2,4 1,2,4 1,2,4 1 1,2 1,2,4 1,2,4 1,2,4 

D$ Bus
32
32

I$ Bus

=
IH4 I4

I$-Tag 

I$T or D$T I$I or D$I

 a31   tag address  a13  a12   a11   a10     index       a5   a4   line offset    a0 

F0
F1

C1 C2 C3 C4 

configuration 
circuit 

=
IH1 I1

I$-Tag 

Ta
g Data 

Bank 1

D
ec

od
er

 

C1

I$I I$T

D4 

Ta
g Data 

Bank 2

D
ec

od
er

 

C4

D$I D$T

D$-Tag

DH4
=

D1 

Ta
g Data 

Bank 2

D
ec

od
er

 

C1

D$I D$T

D$-Tag

DH1
=

Ta
g Data 

Bank 4

D
ec

od
er

 

C4

I$I I$T

Ta
g Data 

Bank 4Ta
g Data 

Bank 1

SD4SD1

SI4SI1



 
 

and F1 are two single-bit registers that can be set to configure 
the cache as a four, two or one way set-associative cache (the 
instruction and data cache have their own control circuits). 
Those two bits are combined with address bits a11 and a12 in a 
configuration circuit to generate four signals (c1, c2, c3, c4), 
which are in turn used to control the configuration of the four 
ways. For example, when F0=0 and F1=0, the cache acts as a 
one-way cache (where that one way is four times bigger than 
the four-way case). Address bits a11 and a12 are decoded in the 
configuration circuit such that exactly one of c1, c2, c3, or c4 
will be logic 1 for a given address. Only one of the tag arrays 
and one of the data arrays are activated for a given address. 
Likewise, only one of the tag comparators is activated. When 
F0=1 and F1=1, the baseline is a four-way cache, while F0=1 
and F1=0 or F0=0 and F1=1 is a two-way cache. 

SD1-SD4 and SI1-SI4 are eight single-bit registers that can 
be used to shut down cache ways to reduce the cache capacity. 
It should be noted that six, seven, and eight index bits are used 
for a four-way, a two-way, and a one-way cache, respectively. 
Also note the total cache capacity does not change when 
configuring the cache for four, two or one way.  

4 Capacity Co-allocation for Energy Reduction 
Each program has different cache capacity needs. We sought 

to extend the base architecture so memory could be co-
allocated to take advantage of the whole capacity on the 
processor. The cache size can be 2, 4, 8, 12, and 14kB. 
Compared with the original configurable cache, there are two 
more possible configurations, which are 12 kB and 14 kB. 

 In the original configurable cache, when a capacity larger 
than 8kB is required, e.g. 14 kB, we have to use set associative 
caches, such as an 8kB 2-way cache to replace the 14Kb cache. 
This option, however, is power costly as shown in Figure 1. We 
sought to develop a cache architecture whose capacity could be 
co-allocated, and a particular cache size can be larger than the 
size of a traditional configurable cache.  The primary concept is 
to allow cache subbanks to be co-allocated. The hardware 
required to support this concept is rather simple. 

The proposed cache is shown in Figure 3. The co-allocation 
of cache capacity is based on the subbank of each cache 
memory. Cache memory is divided into subbanks to balance 
the access time, power consumption, and area [13]. For the 
baseline of an 8kB cache, the memory is divided into four 
subbanks with one subbank to be 2kB. Therefore, the co-
allocation of the cache capacity is at the granularity of one 
subbank, which means the minimum size for a data/instruction 
cache is 2kB, while the maximum is 14kB.  

Figure 3 shows the organization of the proposed cache. The 
proposed cache may have at most three subbanks of the 
data/instruction cache be co-allocated to instruction/data. These 
co-allocatable subbanks may take either the instruction address 
or the data address. The output of these subbanks may go to 
either the instruction bus or the data bus, but not both at the 
same time.  

We will add a multiplexer in front of the cache decoders to 
select between two addresses and another multiplexer in front 
of the tag comparison. Similarly, the output of the co-
allocatable subbanks can now reach both buses, depending on 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: The organization of the capacity co-allocation configurable cache. The instruction and data caches have their own 
configuration control signals, C0, C1, C2, and C4.  

D$ Bus 

=D$-Tag 

DH1 D1 

10

=
D$-Tag

I$-Tag

1
0

DH3

R2

D3 I5

R2 R2 10 10

=
D$-Tag

I$-Tag

1
0

DH4

R2

D4 I5 

R2 R2 
101 0 1 0 

=
D$-Tag 

I$-Tag 

1
0

DH2 

R1 

D2 I6 

R1 R1 

=
I$-Tag 

D$-Tag

1
0

IH4 

R4

D5

R4 10R4 

I4

10

=
I$-Tag 

D$-Tag

1
0

IH3 

R4

D5I3

=

1
0

IH2 

R3 

D6

R3 1 0 R3 

I2 

1 0 

=I$-Tag 

IH1 
I1 

I$I D$I I$T D$T I$I D$I I$T D$T I$I D$I I$T D$T

D$I D$T 

R4 10R4 10

D$I I$I D$T I$T D$I I$I D$T I$TD$I I$I D$T I$T 

I$-Tag 

D$-Tag

I$I I$T 

D
ec

od
er

 

Ta
g Data 

Bank 4 Ta
g Data 

Bank 3Ta
g Data 

Bank 2 Ta
g Data 

Bank 1 

D
ec

od
er

 

D
ec

od
er

 

D
ec

od
er

 

D
ec

od
er

 

Ta
g Data 

Bank 4 Ta
g Data 

Bank 3Ta
g Data 

Bank 2 Ta
g Data 

Bank 1 

D
ec

od
er

 

D
ec

od
er

 

D
ec

od
er

 

32 
32 

I$ Bus 

I$T or D$T I$I or D$I

F0 
F1 

C1 C2 C3 C4 

 a31                         tag address               a13        a12         a11       a10                     index                     a5         a4         line offset              a0 

C1 C2 C3 C4

C1 C2 C3 C4

configuration 
circuit 

SD1 SD2 SD3 SD4 

SI1 SI2 SI3 SI4 

Critical path 

DH1 

DH2 
R1 

R2 

R3 

R4 
IH2 

IH3 

DH3 
DH4 
R2 

IH4 
R4 

D$_hit

R4 
R4 
IH3 
IH4 

R1 

R2 
DH2 

DH3 
DH4 
R2 

R3 
IH2 

IH1 I$_hit 



 
 

the current subbank configuration. These changes are depicted 
in Figure 3 (extra logics are in red). 

Single bit registers R1, R2, R3, and R4 are used to control the 
capacity co-allocation. When R1=1, R2=1, R3=1, and R4=1, the 
subbanks are not co-allocated between the data and instruction 
cache. When R1=1, R2=0, R3=1, and R4=1, the data cache only 
has two subbanks. This means 4kB, while the subbanks 3 and 4 
are allocated to the instruction cache, which means a 12kB. 
Combining the registers of F0 and F1, the cache can be 
configured as varied sizes and associativities. 

5 Experiments 
5.1 Experimental Methodology  

To determine the benefit of the capacity co-allocation 
configurable cache, we simulated 17 benchmarks selected from 
Mibench [7] (other benchmarks are not included due to 
compilation errors). We configure the SimpleScalar [2] as a 
single-issue in-order processor. We collect the information we 
needed to evaluate the energy consumption in the equation as 
shown in Figure 6. These include total cache accesses, 
execution time, and misses. The baseline does not have a level-
two cache. 

Through experiments, we will show that applications have 
varied cache capacity requirements for data and instruction. We 
determine the best configuration by examining all the possible 
configurations and pick the configuration that consumes the 
least energy. Energy evaluation is discussed in Section 6.2.  
5.2 Experimental Results 

Figure 4 shows the miss rate of both the data and instruction 
caches of the benchmarks simulated. The bar with “1” 
represents the miss rate of a traditional 8kB direct mapped 

cache of both data and instruction. While the other bars with 
number  “2”,”3”,”4”, or “5” represents the proposed capacity 
co-allocation cache with an instruction cache size at 2, 4, 12, 
and 14kB and a data cache size at 14, 12, 4, or 2 kB. All of 
these cache configurations are direct mapped caches. 

The first observation is that some benchmarks, such as 
adpcm_dec, adpcm_enc, crc, and susan_smooth, a 2kB 
instruction cache, is enough. Increasing instruction cache 
capacity larger than 2kB would not bring any meaningful miss 
rate reduction. However, the data cache miss rate, can be 
significantly reduced if the memory capacity from the 
instruction cache can be allocated to data cache, e.g. the data 
cache miss rate of benchmark adpcm_dec and adpcm_enc can 
be reduced from 0.7% to 0.05%. However, this reduction may 
or may not bring meaningful energy reductions, which is 
discussed in Section 6.2.  

The second observation is that other benchmarks, such as 
bitcount, the data cache miss rate remains unchanged when 
cache size is larger than 2kB. The miss rate of instruction cache 
achieves the lowest at cache size of 12 kB. For other 
benchmarks, the trade offs between the miss rate of instruction 
and data caches are not straightforward. For example, 
benchmarks FFT and ghostscrip, increasing cache size would 
always decrease miss rate. The best capacity allocation has to 
be determined through considering both performance and total 
energy consumption.   

6 Analysis 
6.1 Timing and Area Analysis 

The timing of the capacity co-allocation cache is prolonged 
due to the extra logics on the critical path shown in Figure 3, 

0
0.01
0.02
0.03
0.04
0.05

1 2 3 4 5
0

0.01
0.02
0.03
0.04
0.05

1 2 3 4 5
0.00

0.05

0.10

0.15

1 2 3 4 5
0.00

0.01

0.02

0.03

1 2 3 4 5
0

0.01
0.02

0.03

0.04

1 2 3 4 5
0.00

0.05
0.10

0.15

0.20

1 2 3 4 5
 

0.00
0.02
0.04
0.06
0.08
0.10

1 2 3 4 5
0.00

0.05

0.10

0.15

1 2 3 4 5
0.00

0.05

0.10

0.15

1 2 3 4 5
0.00

0.05

0.10

0.15

1 2 3 4 5
0.00

0.05

0.10

0.15

1 2 3 4 5
0.00
0.05
0.10
0.15
0.20
0.25

1 2 3 4 5

0
0.05
0.1
0.15
0.2
0.25

1 2 3 4 5
0.00

0.05

0.10

0.15

1 2 3 4 5
0.00

0.01
0.02

0.03

0.04

1 2 3 4 5
0.00

0.01
0.02

0.03

0.04

1 2 3 4 5
0.00
0.02
0.04
0.06
0.08
0.10

1 2 3 4 5
0.00
0.02
0.04
0.06
0.08
0.10

1 2 3 4 5
 

Figure 4: Miss rates of instruction cache (left bar) and data cache (right bar) of the benchmarks simulated. In the horizontal axis, 
“1” stands for the baseline, the size of both the instruction and data caches, which are 8kB. “2”,”3”,”4”, or “5” stands for the 
capacity co-allocation cache with instruction cache sizes at two, four, 12, or 14kB and data cache sizes at 14, 12, four, or 2kB. 

adpcm_dec adpcm_enc basicmath bitcount crc dijkstra

FFT FFT_INV ghostscript patricia qsort rijndael_dec

rijndael_enc stringsearch susan_corner susan_edge susan_smooth Ave.



 
 

including the multiplexer to the address decoder and the extra 
AND and OR gates in the hit signal. We evaluate the time 
delay through our own layout of the configurable cache using 
Cadence [3] tools at 0.18 um technology. We simulated the 
circuits extracted from the layout using HSPICE. The 
dimension of our SRAM cell was 2.4µm x 4.8µm, using 
conventional six-transistor cells. We measured the energy of 
the various parts of a conventional and configurable cache at 
capacities of two, four, eight, 12, and 14 kB, and corresponding 
associativity at 1-way, 2-way, and 4-way during a cache access. 

The extra delay incurred through extra logic is measured at 
less than 3% of the original access time. The delay of the extra 
logic can be tuned through carefully selecting the parameters of 
transistors of the multiplexer, the AND, and the OR gates. The 
trade off is to consider the area, time, and energy consumption.  

The proposed capacity co-allocation cache aims at embedded 
computing systems. The cache configuration is determined 
through off-line simulation. It will be fixed for the lifetime of 
the embedded system instead of being tuned dynamically, 
although the cache architecture itself enables this tuning. 

The extra area comes from the extra multiplexers, the AND, 
and the OR gates to control the hit/miss detection. The area of 
the control logic is very limited compared with the memory and 
is less than 1% of the total cache area. 
6.2 Energy Savings 

Energy is proportional to both power and time. Therefore, to 
reduce energy, we should try to reduce both of them. There are 
two main components that result in power dissipation in CMOS 
circuits: static power dissipation due to leakage current and 
dynamic power dissipation due to logic switching current and 
the charging and discharging of the load capacitance. To 
compare with the highly configurable cache, we consider both 
types of energy and use the same method as in [16] to evaluate 
the energy consumption. Figure 6 shows the equations we use 
to evaluate the energy.  

We obtain the underlined terms through measurements or 
simulations. We measure $_hits and $_misses by running 
SimpleScalar [2] simulations for each cache configuration. We 
compute energy_hit of each cache configuration through the 
simulation of circuits extracted from our cache layout. 

We use the same method to determine the E_miss.  The 
E_offchip_access value is the energy of accessing off-chip 
memory, and the E_uP_stall is the energy consumed when the 
microprocessor is stalled while waiting for the memory system 

to provide an instruction or data. E_cache_block_fill is the 
energy for writing a block into the cache. We considered the 
situations of  k_miss_energy equal to 200 in our evaluation.  

Finally, cyclesis the total number of cycles for the 
benchmark to execute, as computed by SimpleScalar using a 
cache with single cycle access on a hit, 100 cycles on a miss. 
E_static_per_cycle is the total static energy consumed per 
cycle and evaluated as in [16].  

The purpose of the capacity co-allocation is to select the 
cache configuration so the embedded system dissipates the 
lowest energy. We analyze the energy dissipation in this 
section, since the energy consumption is highly related to the 
execution time, e.g., the static energy is proportional to the 
execution time. We have to consider that the access time of the 
proposed capacity co-allocation cache is prolonged by 3%. The 
cache access is typically on the critical path of a processor, so 
the capacity co-allocation cache may have a 3% slower clock 
frequency. 

We computed the total energy consumption of all the 
benchmarks we simulated at all possible cache configurations.  
These included the traditional configurable cache and the 
proposed capacity co-allocation cache. There are 66 possible 
configurations, and it is difficult to include all possible results 
in one figure. Therefore, we show the energy consumption of 
the instruction and data cache separately, computed from 
equations in Figure 6. Figure 5 shows the energy consumption 
of benchmark basicmath, at all possible instruction and data 
cache configurations. The total energy consumptions of a 
particular configuration will be the summation of 
corresponding instruction and data cache energy. This is true, 
since we target the capacity co-allocation cache to single issue 
in-order processors. In other words, the number of cache 
accesses, cache hits, and cache misses of the instruction/data 
cache is not dependent on the parameters of the data/instruction 
cache. The energy dissipated on the instruction cache is much 
higher than the data cache, since the instruction cache is 
accessed more frequently than the data cache. 

 
 
 
 
 
 
 
 
 

Figure 5: Energy of benchmark basicmath under cache configurations of traditional highly configurable cache and capacity co-allocation 
configurable cache considering both dynamic and static energy. 

E_dynamic  =  $_hits * E_hit  + $_misses * E_miss 
E_miss =  E_offchip_access   +  E_uP_stall + E_$_block_fill 

E_static =  cycles * E_static_per_cycle 
E_mem  =  $_access * E_$_access  + $_miss * E_misses 

E_misses=E_next_level_mem+E_$_block_refill 
energy_static_per_cycle = k_static * energy_total 

E_mem = E_dynamic + E_static 
Figure 6: Equations used to evaluate energy consumption. “$” 

stands for cache. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2k
_1
w

4k
_1
w

4k
_2
w

8k
_1
w

8k
_2
w

8k
_4
w

12
_1
w

12
_2
w

12
k_
4w

14
k_
1w

14
k_
2w

14
k_
4w

2k
_1
w

4k
_1
w

4k
_2
w

8k
_1
w

8k
_2
w

8k
_4
w

12
_1
w

12
_2
w

12
k_
4w

14
k_
1w

14
k_
2w

14
k_
4w

Instruction Cache 

Highly configurable cache 

Capacity co-allocation cache 

Data Cache 

Highly configurable cache Capacity co-allocation cache 

En
er

gy
 (J

) 



 
 

From Figure 5, we can see that the instruction cache 
consumes the lowest energy at 14kB with 1-way and a data 
cache at 8kB with 2-way. However, this is not a viable 
combination, since the total capacity is larger than 16kB. For a 
traditional configurable cache, the lowest energy cache 
configuration should be an instruction cache at 8Kb 2-way and 
a data cache at 8kB 2-way. The total energy consumption is 
0.75(E_I$) + 0.11(E_D$) = 0.86(J). With capacity co-
allocation, we can choose an instruction cache at 12kB 1-way 
and a data cache at 4kB 1-way. The total energy consumption 
is: 0.61+0.13 = 0.74(J), representing 0.12/0.86 = 14% extra 
energy reduction over the traditional configurable cache. 
Without capacity co-allocation, the instruction cache has to use 
a 2-way set associative cache. By using capacity co-allocation, 
the capacity allocated to data cache is reduced; we have to use 
a 4kB direct mapped cache instead of the 8kB 2-way cache. 
However, the energy consumption of the data cache is not 
noticeably higher, so we can still achieve a lower energy 
consumption using capacity co-allocation. 

Figure 7 shows the energy consumption for all the 
benchmarks of a conventional direct mapped cache at 8kB 
(8k_1W), the traditional configurable cache (tcc), and the 
proposed capacity co-allocation configurable cache (cccc) 
normalized to a conventional 4-way set associative cache 

(represented as 100%). On average, the capacity co-allocation 
cache achieves the lowest energy consumption, which is 30% 
lower than a conventional 4-way cache. Among 17 of the 
benchmarks simulated, four of them consumed less energy due 
to the capacity co-allocation and avoided using a set associative 
cache.  Table 2 lists the best cache configurations in terms of 
energy of the traditional configurable cache and the capacity 
co-allocation configurable cache. From the table, we can see 
we can avoid using set associative caches for four benchmarks 
and reduce the energy consumption significantly. 

7 Conclusion 
We have extended the traditional configurable cache so 

memory capacity can be co-allocated between the data and 
instruction caches. Compared with the traditional configurable 
cache, a capacity co-allocation configurable cache can achieve 
better performance and lower energy consumption, since we 
may allocate extra capacity in data/instruction cache to 
instruction/data, which might otherwise have to be shut down 
in a traditional configurable cache. 

References 
[1] D.H. Albonesi, “Selective Cache Ways: On-Demand Cache Resource 

Allocation,” Journal of Instruction Level Parallelism, May 2000. 
[2] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version 2.0,” 

Univ. of Wisconsin-Madison Computer Sciences Dept. Technical Report 
#1342, June 1997. 

[3] Cadence Design Systems, http://www.cadence.com 
[4] N. Drach, A. Seznec, “semi-unified caches,” ICPP, pp. 25-28, 1993. 
[5] A. Efthymio and J.Garside,”An Adaptive Serial-Parallel CAM 

Architecture for Low-Power Cache Blocks.” In Proc. of ISLPED, 2002. 
[6] K Flautner, NS Kim, S Martin, D Blaauw, T Mudge,” Drowsy Caches: 

Simple Techniques for Reducing Leakage Power.” ISCA, 2002. 
[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, 

“MiBench: A free, commercially representative embedded benchmark 
suite,” IEEE 4th Annual Workshop on Workload Characterization, 
Austin, TX, December 2001. 

[8] Intel. Intel XScale Microarchitecture, 2001. 
[9] S Kaxiras, Z Hu, M Martonosi, ”Cache decay: exploiting generational 

behavior to reduce cache leakage power.” In Proceedings of ISCA, 2001. 
[10] L. Jin, W. Wu, J. Yang, C. Zhang, and Y. Zhang, "Dynamic Co-allocation 

of Resources for Level One Caches," the 2nd International Conference on 
Embedded Software and Systems, Springer Verlag, December 2005. 

[11] A. Malik, B. Moyer, and D. Cermak, “A low power unified cache 
architecture providing power and performance flexibility,” ISLPED, 
2000. 

[12] M. Powell, S.H. Yang, B. Falsafi, K. Roy, and T.N. Vijaykumar, “Gated-
Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron Cache 
Memories,” Int. Symp. on Low Power Electronics and Design, 2000. 

[13] G. Reinmann and N.P. Jouppi. CACTI2.0: An Integrated Cache Timing 
and Power Model, 1999. COMPAQ western Research Lab. 

[14] S. Santhanam, et. al. “A Low-Cost, 300-MHz, RISC CPU with Attached 
Media Processor,” IEEE Journal of Solid-State Circuit, Vol. 33, 1998. 

[15] A Veidenbaum, D Nicolaescu, ”Low Energy, Highly-Associative Cache 
Design for Embedded Processors,” IEEE ICCD, 2004. 

[16] C. Zhang, F. Vahid, and W. Najjar, “A Highly-Configurable Cache 
Architecture for Embedded Systems,” ISCA, 2003. 

[17] C. Zhang, F. Vahid and W. Najjar, “Energy Benefits of a Configurable 
Line Size Cache for Embedded Systems,” IEEE International Symposium 
on VLSI Design, February 2003. 

[18] Chuanjun Zhang, Frank Vahid and Roman Lysecky, “A Self-Tuning 
Cache Architecture for Embedded Systems Special Issue on Dynamically 
Adaptable Embedded System, ACM Transactions on Embedded 
Computing Systems Vol.3, No.2, May 2004, Pages1-19. 

0%
25%
50%
75%
100%
125%
150%

adpc
m_de

c
adpc

m_en
c
basic

mathbitco
unt crc dijks

tra FFT
FFT_

INV
ghos

tscrip
t
patric

a qsort

rijnda
el_de

c
rijdae

l_enc
strins

earch

susa
n_co

rner

susa
n_ed

ge

susa
n_sm

oothAver
age

8k_1w tcc cccc

 
Figure 7: Energy consumption of the traditional configurable cache (tcc), the proposed capacity co-allocation configurable cache 
(cccc) and a conventional direct mapped cache compared to an 8 kB four-way cache with k_miss_energy =200. 

Table 2: Cache configurations that yield lowest system energy, 
considering both dynamic and static energy at traditional 
configurable cache (tcc_best) and capacity co-allocation 
configurable cache (cccc_best). 

   

Benchmark tcc_best cccc_best
adpcm_dec I2K1WD4K1W I2K1WD4K1W
adpcm_enc I2K1WD4K1W I2K1WD4K1W
basicmath I8K2WD8K2W I12K1WD41W
bitcount I2K1WD2K1W I2K1WD2K1W
crc I2K1WD4K1W I2K1WD4K1W

dijkstra I8K2WD8K2W I4K1WD12K1W
FFT I8K2WD8K2W I4K1WD12K1W

FFT_INV I8K2WD8K2W I12K1WD4K1W
ghostscript I8K4WD8K4W I8K4WD8K4W
patrica I8K4WD8K4W I8K4WD8K4W
qsort I8K4WD8K2W I8K4WD8K2W

rijndael_dec I4K2WD2K1W I4K2WD2K1W
rijdael_enc I4K2WD2K1W I4K2WD2K1W
strinsearch I8K4WD8K1W I8K4WD8K1W
susan_corner I4K1WD4K2W I4K1WD4K2W
susan_edge I8K1WD4K2W I8K1WD4K2W
susan_smooth I2K1WD4K2W I2K1WD4K2W  




