
Requirements and Concepts for Transaction Level
Assertions

Wolfgang Ecker
Infineon Technologies AG

Munich, Germany
Email: Wolfgang.Ecker@infineon.com

Volkan Esen,
Thomas Steininger,

Michael Velten
Infineon Technologies AG

TU Darmstadt - MES
Email: Firstname.Lastname@infineon.com

Michael Hull
Infineon Technologies AG
University of Southampton

Email: mh102@ecs.soton.ac.uk

Abstract— The latest development of hardware design and
verification methodologies shows a trend towards abstraction
levels higher than RTL, referred to as transaction level (TL).
Transaction level models are used for early prototyping and as
reference models for the verification of their RTL representation.
Hence, ensuring their quality is vital for the design process.
Assertion based verification (ABV) has already given a good
return of investment for RTL designs. We expect the same benefit
from leveraging ABV on transaction level; however mapping RTL
ABV methodology directly to TL poses severe problems due to
the abstraction of time and different model of computation.

In this paper we present requirements for TL ABV and
introduce a conceptual language for specifying TL properties.
We use a simple application example for illustrating the concepts
and outline a possible SystemC execution model of the conceptual
language.

I. INTRODUCTION

Electronic system level (ESL) reflects a huge trend towards
modeling systems at higher levels of abstraction. The main
modeling paradigm in ESL is transaction level modeling.
Transaction level models (TLM), in contrast to classical RTL
models, contain less implementation details and are used for
early system validation in the design process. Even though
TLMs contain less details, they implement complex sets of
functionality and therefore need to be verified thoroughly.
Especially since TLMs are commonly used as golden ref-
erences for RTL regressions, the quality of a TLM has to
be assured as much as possible. Assertion based verification
(ABV) methodology, which has been introduced to classical
RTL flows over the last five years, has had great impact
on verification productivity and quality assurance. In contrast
to RTL, no ABV approach has been established for the
transaction level (TL). This is due to the fact that RTL-
ABV cannot directly be mapped to TL since the modeling
paradigm is different. The main difference is the concept
of synchronization. In RTL models it is achieved by the
use of clocks that define when state changes can occur. In
TL synchronization is obtained by mutual dependencies of
transactions and by the use of time annotations in addition
to the use of non-periodic trigger signals. Furthermore, the
applied synchronization schemes depend on the abstraction
layer chosen for a TLM. Since a system representation can

consist of TLMs of different abstraction as well as RTL
models, an ABV approach has to be chosen that can cope
with mixes of abstraction layers. In this paper we gather
requirements that we believe are necessary for lifting ABV
to TL and introduce a conceptual TL assertion language. We
want to point out that this language is not meant to be “yet
another verification language”. It should rather be considered
as a suggestion for further extensions of currently established
assertion languages as PSL [1] and SVA [2].

The paper is structured as follows. After discussing related
work we clarify some preliminaries related to TL. Following
that, we describe the requirements for TL assertions and
introduce our conceptual language. We clarify our discussions
with an application example. Furthermore, we outline a first
implementation of our language in SystemC and close with
conclusions and the next steps to be done.

II. RELATED WORK

SystemC which seems to become the de facto standard for
system-level design [3], does not yet have standard native
temporal assertion support. Work has been presented for
migrating current RTL-ABV approaches to SystemC as e.g. in
[4], [5], [6], and [7]. In contrast to that, the concepts shown in
this paper aim at higher levels of abstraction for RTL concepts
cannot be mapped directly to TL.

Steps are also being taken towards formal model checking
of system level models as shown in [8], [9], [10], and [11].
The basis of these approaches is state space exploration based
on abstract representations of system level models. However,
formal methods unfortunately involve state space explosion
problems that pose limitations on the tasks at hand. The
work presented in this paper instead focuses on dynamic
verification approaches using transaction level assertions for
simulation rather than for static verification. In [12] and [13]
new approaches for transaction level assertions are introduced.
However, in [12] transactions are mapped to signals and
therefore the approach is restricted only to transactions which
are invoked by suspendable processes. Waveforms of these
signals are transformed into a Verilog model, which then
again is checked using SVA. Our approach is based on
events in contrast to signals; hence it is not restricted to a

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

certain kind of transaction. In [13] transactions are recorded
and written into a trace to do post processing. Trace based
assertion checking however requires that everything to be
recorded must be annotated in the code and the creation of
simulation data bases can become very resource intensive.
Furthermore, this approach does not consider start and end
of transactions. Therefore overlaps of transactions and parent
child relations cannot be detected. In [14] extensions to SVA
have been developed to make SVA more applicable to system
level design. Our approach is different in that it works with
an abstraction level independent delay mechanism and also
utilizes timer events and localized negative trigger expressions
to allow a more flexible property evaluation.

III. PRELIMINARIES

In this section we clarify some preliminary terms used in
the remainder of this paper.

A. Transactions

A transaction describes the communication between two
modules and hides the protocol specific implementation from
the implementation of these modules. The most common way
for modeling transactions is the utilization of remote function
calls, i.e., the initiator invokes a method in the destination
module. Transactions can be grouped in two classes with
regard to control flow and two classes with regard to data
flow. For the former we distinguish between “blocking” versus
“non-blocking” transactions and for the latter we distinguish
between “unidirectional” and “bidirectional” transactions. A
transaction is considered “blocking” if the execution of this
transaction can take at least one delta cycle. Hence the initiator
has to block until the transaction is complete. A transaction is
considered “non-blocking” if the execution finishes in the same
delta where it was called. The distinction with respect to data
flow is straight forward and does not need further explanation.

B. Abstraction Levels

We focus on three main abstraction levels as defined in the
OSCI TLM standard [15]:

• Programmer’s View (PV): The API to the system does
not include specifics about timing. Hence, it does not
matter whether the system includes timing or not. PV
is mostly used in the conceptual phase of an embedded
system design cycle, i.e., the designed models are closer
to software than to hardware.

• Programmer’s View + Timing (PV+T, PVT): The API
to the system does include timing information. However,
timing is modeled by time annotations in contrast to
periodic signal changes. This level is mainly used at the
architectural exploration phase of an embedded design
cycle. By trying different HW/SW partitioning schemes
performance data is gathered considering the overall
timing of the system.

• Cycle Accurate (CA): The API to the system includes
more granular timing information. Actions performed
within the system are cycle accurate compared to an RTL

implementation. However, the cycle accurate behavior
does not imply the use of clocks. Cycle accurate models
contain more micro architectural information when com-
pared to PV+T models and higher.

C. Transaction Sequences

The functionality of a transaction level model can be char-
acterized by the use of transaction sequences as described in
[9]. A transaction sequence corresponds to a user specifiable
pattern of consecutive transactions which occur during a sim-
ulation run. Such sequences can be used to specify properties
about the system behavior. Later in this paper we show how
to combine transaction sequences with boolean sequences in
order to enable an expressive way for system level property
specification.

IV. REQUIREMENTS FOR TL ASSERTIONS

In this section we gather the requirements for transaction
level assertions.

A. Monitoring Transactions

In order to allow specification of transaction sequences
it has to be first clarified which information needs to be
monitored. Obviously the occurrence of a transaction has
to be detected and all arguments attached to it have to be
tracked. However, detecting that a transaction has occurred
is not enough. As an example, figure 1 shows a scenario
where a blocking PUT transaction is issued on a full FIFO.
The PUT transaction blocks until at least one GET transaction
has been called on the FIFO. If only the completion of PUT
and GET transactions was monitored it would be impossible
to detect that a PUT blocks until a GET has finished. How-
ever, a requirement of a performance validation during the
architecture evaluation phase could be to detect and minimize
blocking scenarios. This example shows that the monitoring
has to include the detection of both begin and termination of
a transaction. This also allows the detection of overlapping
transactions and thus, provides a more granular view of the
system behavior. Throughout the remainder of this paper we
refer to the start and the end of a transaction as start and
end events respectively. The detection of start and end of
a transaction is especially useful with the identification of
transactions or the synchronization of any assertion to the
design it is associated with. Pre- and postconditions which can
be sampled at the start and end respectively can reveal enough
information for either the identification of a transaction or the
state the monitored design is in.

Keeping in mind that non-blocking transactions execute
within one delta cycle, and can thus be called from a non
suspendable context monitoring must not introduce any delta
delays. In fact if delta cycles are introduced by monitors
any assertion reactive to the monitored transactions will lose
synchronization to the design. Therefore the events detected by
monitors have to be propagated immediately to the assertions,
avoiding any scheduling.

PUT

 PUT

PUT.start PUT.end

PUT.endPUT.start

event

order

GET.endGET.start

 GET

GET.endGET.start

 GET

Figure 1. Blocking PUT Transaction

B. Sequence Expressions

As for the same reasons as in RTL, transaction level asser-
tions have to keep track of sequences of boolean propositions
as well. However, on RTL it is well defined when to sample the
design states in order to evaluate these propositions. Usually
sampling on RTL is relative to the clock of the domain which
is monitored. On transaction level clocks are usually omitted
because the concept of time is abstracted. The efficiency of
TLMs is based on the reduction of the number of scheduled
events, context switches, and the amount of detail to be
simulated. Hence, synchronization schemes for TLMs strongly
depend on the chosen abstraction layer. The synchronization
schemes can be characterized as follows:

• PV: Processes are synchronized using abstract handshake
protocols or by the use of delta delay annotations.

• PVT: Additionally to PV schemes processes are synchro-
nized by time annotations and timed protocols.

• CA: Processes are synchronized as on PVT; however,
time annotations are based on cycle periods. Besides time
annotations clock like signals can also be used.

Communication in all these abstraction layers is modeled
using transactions and therefore actions in modules are in-
voked through transaction calls. Due to this fact we can
derive that transactions trigger the evaluation of sequence
expressions. As described in the previous section we can use
the start and the end of a transaction as a trigger similar to a
clock event. Listing 1 shows a simple sequence expression:

#1(PUT . end | GET . end) (i n d e x == 1)
#1(PUT . end | GET . end) (i n d e x == 2) ;

Listing 1. Simple Sequence Example

A delay operator is denoted by the # symbol. The sequence
in listing 1 consists of two delay operators which are triggered
with the end of either a PUT or a GET transaction on a
FIFO. Identifier index denotes how many cells in the FIFO
are occupied. This sequence matches whenever the index
changes from 1 to 2 on either a PUT or a GET transaction.
Since this sequence is triggered by transactions only, it is
compatible to all three abstraction levels. Using transactions
as triggers however introduces a new issue to be addressed.
When triggering with clocks we can usually assume that the
clock will produce an event in a definite time window, i.e.
the clock period. In contrast to that, we cannot assume that
the transactions and respectively their events will occur at all.

It is possible that the evaluation of such a sequence cannot
produce a result because the triggers it is sensitive to do not
occur. To overcome this, sequence expressions should support
the specification of negative triggers as well, i.e., triggers that
prematurely cancel the evaluation of a sequence and lead to a
“not matched” result1.

As mentioned above, the PVT abstraction level considers
timing as well. In order to be able to keep track of the timing
information, additional requirements for sequence expressions
can be formulated. For example we could express a sequence
which is triggered by a PUT/GET pair where GET occurs
within a specifiable time range after PUT. Listing 2 shows a
sample notation of such a sequence.

#1(PUT . end) (some b o o l e a n e x p r e s s i o n)
#1(GET . end@ [2 0 : 3 0]) . . . ;

Listing 2. Time Constraints Example

The first delay operator of the sequence in listing 2 is
triggered only by the end of a PUT transaction, and the second
delay operator is triggered with the end of a GET transaction
only if it occurs 20 to 30 time steps2 after the last PUT. This
example also shows that there is no need to restrict all delay
operators of one sequence to the same set of triggers.

In case the GET transaction does not finish within the
specified time range the corresponding evaluation will starve
and not produce any result. As described earlier the utilization
of negative triggers can overcome this problem. However, in
case there is no other event in the design to serve as a negative
trigger, a timer event could be specified as shown in listing 3.

#1(PUT . end) t rue
#1(GET . end@ [2 0 : 3 0] ; t imer (3 1)) t rue ;

Listing 3. Timer Example

In case the GET transaction does not fulfill the time constraint,
the sequence evaluation will produce a negative result3 at the
31st time step after the PUT transaction.

Listing 3 shows that if boolean expressions are omitted the
sequence would match as soon as this special PUT/GET pair
occurs.

In contrast to PV, the synchronization schemes in PVT
and CA models allow actions to happen at the same time4.
Thus transaction level assertions should be able to capture
transactions which happen at the same time. We can derive the
requirement that sequence expressions should allow boolean
combinations of events as triggers to achieve a higher ex-
pressiveness. Using our FIFO example we could specify a
sequence expression which produces a “not-matched” result
if both a PUT and a GET transaction occur simultaneously
(see listing 4). Note that simultaneity is detectable only on

1Note that this is a negative result of the sequence evaluation rather than a
simple disabling.

2The smallest time unit chosen in a simulation.
3The semicolon separates the positive from the negative triggers. Thus, the

timer clause is part of the negative trigger list.
4The term “Time” denotes simulation time.

abstraction levels lower than PV.

1 (; PUT . s t a r t & GET . s t a r t) t rue ;

Listing 4. Simultaneous Transactions

Listing 4 shows that the start of both a PUT and a GET
is concatenated and the result of this expression is used as a
negative trigger.

Additionally to the previous considerations we want to
mention that use cases of transaction level assertions will
most likely be in a multi-abstraction environment, i.e., mixed
level simulation (RTL/TLM co-simulation). The RTL trigger
concept which is based on clock events can directly be mapped
to the concepts introduced so far.

C. Evaluation Modes

In this section we propose the use of different evaluation
modes, which allow a more concise description of properties
and sequences. These modes reflect concepts from different
established ABV approaches and are not specific to transaction
level assertions.

1) Sequence Evaluation Modes: In both PSL and SVA,
an evaluation attempt of a sequence is started with every
occurrence of the sequence trigger. The length of the pattern
which is to be matched determines the length of one evaluation
attempt. If a sequence contains ranges of delays all alternatives
of one attempt are evaluated in parallel. Two distinct modes
for obtaining a result of one sequence evaluation can be found:

• AnyMatch: Produce a match for the sequence for each
matching alternative.

• FirstMatch: Stop evaluation as soon as a match for one
alternative is found.

Both strategies allow overlapping evaluation attempts to
match at the same time.

2) Property Evaluation Modes: The evaluation modes de-
scribed in this section refer to the evaluation of implication
operators within properties. An implication consists of an
antecedent and a consequent expression where a match of the
antecedent implies a match of the consequent. The evaluation
of an implication begins with the evaluation of the antecedent.
If the antecedent has matched, the consequent is evaluated.
Since both antecedent and consequent can be any kind of
sequence expression, the length of the evaluation of a property
is the aggregation of the antecedent and consequent evaluation.
Several evaluation attempts of one property can be active at
the same time. Hence, evaluation attempts may overlap. This
is the default behavior known from both SVA and PSL and
can be expressed with the underlying formal semantics of
sequence and property operators. We refer to this mode as
“Overlap” mode. However, considering the Open Verification
Library (OVL) [16] we find that three non-overlapping modes
are introduced which are very useful for a concise property
description. We refer to these modes as follows:

• Restart: An active implication is restarted on a further
match of the antecedent.

• NoRestart: A further match of the antecedent is ignored
while the implication is already under evaluation.

• ReportOnRestart: A further match of the antecedent is re-
ported while the implication is already under evaluation.
This match does not influence the current evaluation.

For transaction level assertions we suggest the combination
of both the common SVA/PSL and OVL evaluation modes in
order to gain the advantages of both approaches.

V. A CONCEPTUAL TL ASSERTION LANGUAGE

The main goal of our approach is to provide a consistent
formal framework that allows the specification of properties
of systems which are composed of sub blocks on different
abstraction levels.

In this section we introduce a way for specifying transaction
level assertions which fulfill the derived requirements given in
section IV using five layers.

• Boolean Layer: Includes all operators returning a
boolean value

• Event Layer: Includes all operators returning events
• Sequence Layer: Includes the definition of sequences

and sequence operators
• Property Layer: Includes the definition of properties and

property operators
• Verification Layer: Includes the verification directives

A. Boolean Layer

The boolean layer contains all common boolean operators
in order to allow the specification of propositions in a system
at the occurrence of events. With the last_event(event)
function we introduce, a new operator. Whenever the evalu-
ation point reaches this operator, it checks if the last trigger
event is equal to the event given in the last_event operator.
Depending on the result of this condition the operator evaluates
to false or true. Boolean expressions are resolved after
each delay operator. Delay operators are introduced later in
section V-C.

Local variables are known from SystemVerilog Assertions.
They are declared within the property layer hence each
boolean expression within one property can access local
variables. Local variables can be used in combination with
boolean expressions. Everytime a boolean expression evaluates
to true operations can be performed and results can be stored
in a local variable.

B. Event Layer

As explained in section IV, verification of transaction level
models has to be done on an event driven basis. An event
happens in zero time and can be used for triggering processes.
Our verification approach assumes that both start and end of a
transaction produce a definite event that is used for triggering
evaluation attempts of verification directives. As shown earlier,
different levels of abstraction pose different requirements. The
event layer defines all operators and functions that produce
events. Table 1 shows an overview.

Symbol Definition Works on
ev expr event expression built from events and

event operators;
PV, PVT, CA

e1 | e2 ev expr produces event if e1 or e2
occurs;

PV, PVT, CA

e1 & e2 ev expr produces event if e1 and e2
occur in the same time slot;

PVT, CA

ev expr@[m:n] produces event if ev expr occurs
within given time range; time range
is relative to the evaluation point with
m ≤ n;

PVT, CA

timer(timeval) produces event at specified time value;
timer(10) → event scheduled at 10
time steps later than the evaluation
point;

PVT, CA

posedge(signal) produces an event on a positive edge
of the specified signal

CA

negedge(signal) produces an event on a negative edge
of the specified signal

CA

Table 1. Event Layer Operators and Functions

C. Sequence Layer

This layer is used for the specification of transaction or event
sequences. A sequence is a description of a pattern which is
attempted to be matched against design states. The result of
such an attempt can be either “matched” or “not matched”. The
key feature of the sequence layer is a general delay operator
which works independently from the abstraction layer and
thus allows the specification of sequences across abstraction
levels. Figure 2 depicts the overall structure and functionality
of the general delay operator. In contrast to an SVA delay,

+

#m

+ +pos +

#m +1

#m + ...

#m + n

+neg

m = 3

delay

range

shift evaluation point

result = matched

cancel evaluation

result = not matched

evaluation

point

positive (pos) negative (neg)

[m:n] (trigger_expr ; trigger_expr)
evaluation

point

Figure 2. General Delay Operator

for example, it is possible to specify triggers that shift or
specifically stop the evaluation. A trigger expression is built
from event expressions (possibly using time constraints), and
an optional timer event. A trigger expression may only have
one timer event. Triggers that shift the evaluation are positive
triggers, triggers that stop the evaluation are negative triggers.
A user specifiable priority determines whether the result will
produce a “match” if both the positive and negative trigger
occur at the same time. This is denoted by the * operator.
Per default, the negative expression has a higher priority. One
evaluation attempt of a sequence built from this delay operator
is called a thread. The specification of a delay range leads to
a split into several so-called subthreads. Listing 5 shows a
sample configuration of the general delay operator.

5 ((e1 | e2)@[4 5 : 5 0] ∗ ; e3 , t imer (5 1))
(b o o l e x p r) . . .

Listing 5. Sample Event Sequence

This configuration delays the evaluation until e1 or e2 have
occurred five times with a temporal distance of 45 to 50 time
steps. If the positive trigger occurs, the delay operator results in
a “match” and the boolean expression to the right is evaluated.
The delay operator results in “not matched” if either e3 occurs,
or the evaluation per delay step takes 51 time steps. In this
example, the positive trigger has a higher priority than the
negative trigger.

For a formal description5 of the delay operator, we define
an alphabet Σ that consists of all possible trigger expressions.
Furthermore we define two arrays ε, ω. ε represents a trace
of events, and ω a trace of boolean propositions. Thus, the
elements of ε hold all events occurring during simulation
and the elements of ω hold boolean propositions sampled
on the occurrence of these events. According to that, it is
given that |ε| = |ω| while |ε| and |ω| denote the length of
the corresponding arrays. An abstract notation of the delay
operator is given in listing 6.

#N(pos ; neg) a

Listing 6. Formal Event Sequence

In listing 6, a is a boolean expression while N denotes the
number of times the delay operator has to be triggered. The
positive and negative trigger expressions are referred to as pos
and neg. In order for this sequence to match the following
conditions have to be fulfilled:

• ε, ω |= #N(pos;neg) a :
ε and ω have to model the sequence

• ε � #N(pos;neg) a iff there exists at least one interval
εk = [ε(k); ε(k+N−1)] with (εk(i) � pos)∧(εk(i) 2 neg),
0 ≤ i ≤ N−1 and 0 ≤ k ≤ ∞

• ω � #N(pos;neg) a iff there exists at least one element
ω(k+N−1) = x with x � a

Hence, the general delay operator can be used to track both
sequences of events and boolean propositions along these
sequences. The operator does not depend on the abstraction
layer, since the different semantics are obtained by the defini-
tion of events on different abstraction levels. From a syntactic
point of view, a sequence can be defined using delimiter
keywords as shown in listing 7.

sequence s1
#1(e1) t rue #1(e2) . . . ;

endsequence

Listing 7. Sequence Syntax

Note that since triggers are specified locally in every delay
operator, a sequence specification has to start with a delay
operator.

5The formal description is similar to Annex E of the SystemVerilog P1800
standard. Therefore only basic relations are shown.

D. Property Layer

The property layer is located on top of the sequence layer.
A property has a boolean notion and describes the intended
behavior of a design. The syntax of a property is shown in
listing 8.

property p1 (AnteMode Amode , PropMode Pmode)
a n t s e q |−> conseq ;

endproperty

Listing 8. Property Syntax

As shown in listing 8 a property instantiates sequences and
specifies implications. Furthermore, local variables are de-
clared within this layer. The implication operator is untimed
- i.e., no delay is introduced - and works like a boolean
implication. While the sequence mode of the left hand side
(AnteMode Amode) is parameterizable, the sequence mode
of the right hand side is fixed; this is explained later in this
section. The way antecedent and consequent are related to each
other depends on the property mode (PropMode Pmode).
As explained in section IV we identify four different modes:
Restart, NoRestart, ReportOnRestart and Overlap.

Combining sequence and property modes results in a very
limited number of feasible possibilities.

A sequence on the left hand side of an implication can
have any of the sequence modes, for there is no dependency
between it and the property mode (note that the standard mode
of SVA for the left hand side is “AnyMatch”).

The mode of a sequence at the right hand side of an im-
plication is fixed. Here, only mode “FirstMatch” makes sense.
A sequence at the right hand side run in mode “AnyMatch”
might produce several matches which would result in several
property results (possibly even both fail and pass for a single
antecedent match).

E. Verification Layer

The verification layer is used for specifying which proper-
ties have to be monitored during verification. Listing 9 gives
an example about the syntax of the verification layer.

v e r i f y SLV
d i r e c t i v e (p1 (AnyMatch , Overlap) ,

a s s e r t c o v e r (ERROR, ”msg” , a l l)) ;
e n d v e r i f y

Listing 9. Verification Layer Example

Within the directive statement we specify the property
(p1) which should be checked. As parameters we specify the
evaluation modes of the antecedent sequence (AnyMatch)
and the property (Overlap). The second parameter within the
directive specifies whether to assert, to cover or to both
assert and cover the property. The assert directive interacts
with the simulator and invokes actions if a property to be
asserted fails. Therefore it can be parameterized with a severity
level, in order to specify the degree of action. Furthermore, an
assertion message can be specified. The cover directive can
be used instead of the assert directive. It does not assert

if the property fails but information about vacuous and non-
vaucous successes will be collected. Therefore the cover
directive provides a parameter in order to specify the type
of coverage. It is possible to cover vacuous successes, non-
vacuous successes, fails, and any combination of those. With
the assert_cover directive as a further possibility, both
assertion and coverage actions will be performed. No new
features are needed for this layer to fit the requirements for
TL-Assertions.

VI. APPLICATION EXAMPLE

In this section we introduce a simple transaction level PVT
model and explain how to apply some of the introduced
concepts.

A. CPU-Array

Figure 3 depicts the application model including the proxy
monitors used for the transaction detection.

proxy
sub

system

sub

system

sub

system
proxy

Master

CPU

sort

subsystem

proxy proxy

Figure 3. CPU-Array

The model consists of an array of 16 subsystems, each
including one CPU and I/O ports for data transfers. The com-
munication between a CPU and its I/O devices uses blocking
transactions for reading and writing to the peripherals. The
CPU blocks when the addressed device is not ready for that
access, i.e., an IN device can only be read by the CPU if its
data register contains valid data and an OUT device can only
be written if its data register is empty. Each subsystems output
port is connected to the input port of the next subsystem.
The input port of the first subsystem is accessed from the
outer driving module. The output port of the last subsystem is
connected to the outer module’s input port.

The software running on the CPUs implements a distributed
algorithm for sorting non zero values. The program flow is
depicted in figure 4.

At first the number of data values to be sorted is read in and
then passed on to the next subsystem. This value determines
the number of iterations of the implemented loop. Following
that, the first sort value is read in and stored within the R0
register of the CPU. Then the second sort value is read in
to register R1. After a comparison between R0 and R1 the
greater of both values is sent to the next subsystem. Then the
execution loops back to reading in the next sort value. Once
all iterations are done the subsystem sends out the remaining
value.

READ

CNT -> R3
SEND

R3

READ

1st VAL

-> R0

STOP
SEND

R0

LOOP

READ

2nd VAL

-> R1

COMPARE

R1 > R0

START

T

R

U

E

COMPARE

R3 == 0
R3--

SEND

R0

R0 = R1

SEND

R1

TRUE

Figure 4. Program Flow of Sort Algorithm

When the first sorted value propagates to the output of the
array, all remaining values are expected to arrive with exactly
10 time steps distance at the output.

Further details of the application model are not relevant for
the remainder of this paper.

B. Assertions for the Application Model
Many properties can be specified for this simple system. We

will focus on two properties we want to assert:
• prop-SortVal-pv: Within the loop of the sort algorithm in

one instance of a subsystem, a value that is read in is
propagated to the output if it is greater than the value
stored in the CPU’s R0 register and vice versa.

• prop-17in17out-pvt: Pushing 17 values in the array im-
plies 17 values at the output of the array where the
first value pushed in equals the first value at the output.
Additionally, the last 16 values have to have a temporal
distance of 10 time steps to each other.

The first property is formulated regardless of time, whereas
the second property requires further time information.

Property “prop-SortVal-pv” has to hold 15 times for each
instantiated subsystem. Listing 10 shows the notation of this
property. The antecedent sequence is triggered with the end of
a read transaction that is invoked by the CPU. The consequent
sequence is triggered with the end of a write transaction
invoked by the CPU.

property prop−Sor tVa l−pv (AnyMatch ,
ReportOnRestart)

s c u i n t <12> L1 , L2 ;

#1(CPU read end) (CPU . R1 != 0 , L1 = CPU . R1 ,
L2 = CPU . R0)

|−>
#1(CPU wri te end) (L1>L2 ? CPU wri te . d a t a == L1

: CPU wri te . d a t a == L2) ;
endproperty

Listing 10. Property: “prop-SortVal-pv”

Since the sort algorithm requires two values to be read into
the CPU prior to starting the loop, the antecedent has to be

formulated such that the first two read transactions are ignored.
The loop starts with a read transaction that stores the value
in the R1 register. Hence, we can detect the beginning of the
loop by requiring R1 to contain a non zero value when the
transaction has finished. Once this condition is detected, the
two values to be compared by the algorithm are stored in local
variables. The consequent sequence evaluates whether the right
value has been propagated out using the write transaction. The
identifier CPU write.data is a reference to the monitor that
detects write transactions and stores their payload in a member
variable called data.

The evaluation mode for the antecedent is “AnyMatch” for
the sequence has to detect any completed read transaction.
The evaluation of the property mode is “ReportOnRestart” for
the occurrence of a further read transaction prior to a write
transaction is illegal behavior within the loop.

The second property is formulated in listing 11.

property prop−17 i n 1 7 o u t−p v t (AnyMatch ,
ReportOnRestart)

s c u i n t <12> L1 ;

#1(b p u t i n s t) (true , L1 = b p u t i n s t . d a t a)
#16(b p u t i n s t) t rue

|−>
#1(b p u t o u t e n d) (L1 == b p u t o u t e n d . d a t a)

#1(b p u t o u t e n d) t rue
#15(b p u t o u t e n d @ (1 0) ; t imer (1 1)) t rue ;

endproperty

Listing 11. Property: “prop-17in17out-pvt”

The identifier b put in st refers to the start of the blocking
transaction (put in) that drives a value into the array. The
identifier b put out end denotes the end of the transaction
(put out) that propagates a value out of the array.

For the antecedent we chose the start event of put in as
a trigger because the blocking mechanism allows that the
first value propagates out of the array while the last value
is driven in. The first delay operator is for catching the first
occurrence of put in in order to store its payload in the
local variable L1. After 16 further occurrences of put in the
antecedent produces a match which starts the implication.
Note that the property mode is specified as “ReportOnRestart”.
Since several evaluation attempts of a sequence may overlap,
new evaluation attempts are created with every occurrence of
put in. By choosing this property mode we ensure that there
is no further put in transaction while the consequent is under
evaluation.

The first delay operator of the consequent sequence catches
the first put out transaction in order to compare its payload
with the first value being sent into the array. The second delay
operator matches the second put out transaction and the third
delay operator matches the remaining put out transactions,
while checking that they occur exactly in a 10 time steps
distance to each other. The delay operator in the middle is
necessary since the temporal delay between the first and the
second “put out” transaction is not specified. The last delay

operator utilizes the time constraint operator to ensure that the
corresponding event is only accepted if it occurs exactly 10
time steps after one step of this delay has begun. The timer
operator is applied in order to ensure that the sequence will
produce a result.

VII. IMPLEMENTATION

In this section we outline a SystemC implementation of
the concepts introduced above. Since SystemC supports object
oriented design it is possible to model most of the operators
from section V as classes or modules respectively. The benefit
is that these operators can be interconnected using the same
mechanics as in a TLM. The modular concept allows an easy
assembly of any sequence expression.

Generally all operators communicate via tokens, which
include all necessary data for evaluating a sequence. The
operators work in a pipelined way and utilize dynamic data
structures - mainly from the Standard Template Library - to
preserve the order of execution.

The transaction detection works on the basis of proxy mod-
ules which intercept transactions and extract a copy of their
payloads. To avoid any effect on the design the transaction
detection works seamlessly from the design’s point of view.
The transaction start and end events are not implemented using
“sc events” for this would involve scheduling and could lead
to non determinism and delta delays. Start and end events are
implemented as call backs to the assertions which are located
parallel to the design. By using call backs we ensure that
all assertions react to the occurrence of a transaction before
further state changes in the design can happen. Hence, the
assertions remain synchronous to the design and react within
the same delta where a transaction starts or ends respectively.

A more detailed description of the implementation and
experimental results cannot be given for it would exceed the
scope of this paper, by far. The utilized algorithms and the
assertion architecture including its effectiveness will be subject
of another publication.

VIII. CONCLUSION AND OUTLOOK

The discussions in the previous sections show that applying
assertion based verification to transaction level models offers
new ways of high level system verification. We first have
gathered the requirements to a TL-ABV approach. Based
on these requirements we introduced a conceptual assertion
language. We were able to combine verification on all ab-
straction levels into one consistent event based verification
approach by considering transactions as a sequence of a
start and an end event. Furthermore, we abstracted time by
replacing timed delays by timer events and time constraints.

Therefore it was possible to define a general delay operator
that allowed building sequences of transactions regardless of
the abstraction level. In addition to these definitions we also
combined evaluation modes which are distributed over several
ABV approaches into one concept. Our application example
showed that the concepts are feasible enough to justify further
research in this direction.

Further additions have to be developed that allow for
instance combinations of sequences using sequence operators
and boolean expressions formulated on properties. In addition
to that we work on a fully pipelined evaluation mode that
allows exact matches in sequences.

Furthermore, a methodology on top of our concepts has to
be developed to maximize the benefit of ABV for TL.

REFERENCES

[1] H. Foster, E. Marschner, and Y. Wolfsthal, “IEEE 1850 PSL: The
Next Generation.” [Online]. Available: http://www.pslsugar.org/papers/
ieee1850psl-the next generation.pdf

[2] IEEE Computer Society, “SystemVerilog LRM P1800.” [Online].
Available: http://www.ieee.org

[3] G. Martin, “Systemc and the future of design languages: Opportunities
for users and research,” in 16th Symposium on Integrated Circuits and
Systems Design, 2003, pp. 61–62.

[4] T. Peng and B. Baruah, “Using assertion-based verification classes with
systemc verification library,” Synopsys Users Group, Boston, 2003.

[5] A. Habibi and S. Tahar, “On the extension of systemc by systemverilog
assertions,” in Canadian Conference on Electrical & Computer Engi-
neering, vol. 4, Niagara Falls, Ontario, Canada, May 2004, pp. 1869–
1872.

[6] W. Ecker, V. Esen, J. Smit, T. Steininger, and M. Velten, “Implementa-
tion of a systemc assertion library,” in IP Based SoC Design (IP/SOC),
December 2005, pp. 9–13.

[7] A. Habibi and S. Tahar, “Towards an efficient assertion based verification
of systemc designs,” in In Proc. of the High Level Design Validation
and Test Workshop, Sonoma Valley, California, USA, November 2004,
pp. 19–22.

[8] R. J. Weiss, J. Ruf, T. Kropf, and W. Rosenstiel, “Efficient and
customizable integration of temporal properties into systemc,” Lausanne,
Switzerland, September 2005.

[9] P. Peranandam, R. Weiss, J. Ruf., and T. Kropf, “Transactional level
verification and coverage metrics by means of symbolic simulation,” in
ITG/GI/GMM Workshop, February 2004.

[10] A. Habibi and S. Tahar, “Assertion and model checking of systemc,” in
North American SystemC Users Group Meeting, San Diego, California,
USA, June 2004.

[11] D. Große and R. Drechsler, “Formal verification of ltl formulas for
systemc designs,” in International Symposium on Circuits and Systems,
vol. 5, May 2003, pp. 245–248.

[12] B. Niemann and C. Haubelt, “Assertion based verification of transaction
level models,” in ITG/GI/GMM Workshop, vol. 9, Dresden, Germany,
February 2006, pp. 232–236.

[13] X. Chen, Y. Luo, H. Hsieh, L. Bhuyan, and F. Balarin, “Assertion based
verification and analysis of network processor architectures,” Design
Automation for Embedded Systems, 2004.

[14] E. Cerny, “Personal discussions yet to be published.”
[15] A. Rose, S. Swan, J. Pierce, and J. M. Fernandez, “Transaction level

modeling in systemc.” [Online]. Available: http://www.systemc.org
[16] Accellera, “Open Verification Library.” [Online]. Available: http:

//www.accellera.org/activities/ovl/

