
 
 

Abstract—Reducing energy consumption is an important issue 
for battery powered embedded computing systems. Content 
Addressable Memory (CAM)-based Highly-Associative Caches 
(HAC) are widely used in low power embedded microprocessors. 
The CAM tag is costly in power, access time, and area. We have 
designed a Low Power Highly Associative Cache (LPHAC) whose 
tag is partially implemented by using CAM, while the remaining 
tag is implemented by using SRAM. The experimental results 
from 10 MediaBench and all 26 SPEC2K benchmarks show the 
proposed LPHAC exhibits almost the identical miss rate as a 
traditional HAC.  At the same time, it consumes 27% less per 
cache access power and 1.6% less area with faster access time. 

1. Introduction 
Energy consumption is a major concern in many embedded 

computing systems. The microprocessor and memory consume 
a significant portion of the total energy of an embedded system. 
Several studies have shown that cache memories account for 
about 40% [3][12] of the total energy consumed in a 
microprocessor, thus an energy efficient cache architecture is a 
critical issue in the design of microprocessors for embedded 
systems. 

Microprocessors designed for embedded systems are 
typically not equipped with a level two cache, which is widely 
available for high performance processors. Accessing off-chip 
memory is both time consuming and energy costly due to the 
high capacitance of the off-chip buses and the large storage of 
the off-chip memory. Therefore, reducing the miss rate of a 
level-one cache for embedded system microprocessors can 
greatly reduce the total power consumption. 
       The CAM-based HAC [3][9] is specifically designed for 
low power embedded systems where performance (cache 
access time) may be traded for low energy consumption. The 
CAM HAC reduces energy consumption of an embedded 
system through two main organizational techniques. One is to 
aggressively partition the cache memory into small subbanks, 
typically 1kB per bank. The small size of the subbank reduces 
the energy per cache access. The other is the high associativity. 
Typically, a 32-way cache is implemented in one subbank. 
High associativity greatly reduces the miss rate and the 
accesses to the off-chip buses and memory, which are both 
power and performance costly. 

The problem of a traditional HAC design is the CAM tag 
consumes a significant portion of the total per-cache access 
power. CAM consumes 5-10 times more power than a same-
sized SRAM [2]. Reducing the power consumption of the 
CAM-based tag is an important issue in low power HAC 
design. 

The contribution of our technique is that we propose a low 
power CAM HAC (LPHAC) design that uses eight bits instead 
of 24 bits of CAM-based tag. The remaining 16 bits of the tag 
are implemented using SRAM, which is more efficient in area 
and power than CAM. We also show the tradeoff of the number 
of CAM tag bits used with the performance overhead in terms 
of hit rate. Using execution driven simulations from 10 
Mediabench [4] and all 26 SPEC2K [10]  benchmarks, we 
demonstrate that the miss rate of the proposed LPHAC remains 
almost the same with the original HAC while consuming 27% 
less per cache access power and 1.6% less area with faster 
access time. 

This paper is organized as follows. Section 2 is a brief 
review of the related work. Section 3 describes traditional HAC 
architecture. Section 4 is the design of the proposed low power 
HAC. Section 5 presents experimental results. We analyze the 
LPHAC in Section 6 and conclude in Section 7. 

2. Related Work 
Substantial research has been conducted to reduce the energy 

consumption of HAC for embedded computing systems using 
organization and circuit’s techniques.  

Organization techniques include way prediction [11]  and 
way memorization [5], which reduces access to the power 
costly CAM-based tags. Way-prediction HAC can skip the 
accesses of the CAM-based tag when the prediction of the next 
accessed cache way is correct. A simple last-used prediction 
technique can achieve an 86% correct prediction.  

Way memorization cache records the last accessed way in a 
counter. When the identical way is next accessed, the tag can 
be skipped to save energy. Since the well-known locality exists 
in both data and instructions, way memorization can save 21% 
of the power. Compared to the proposed LPHAC, both way 
prediction and way memorization require extra hardware, while 
LPHAC reduces hardware from the traditional HAC design. 
Both way prediction and way memorization can be combined 
with the proposed LPHAC design to further reduce power 
consumption. 

 Circuit techniques can also be used to reduce the power 
consumption of CAM. Pipelined CAM [7] breaks the match 
lines into pipelined stages. Since mismatches typically happen 
in the early stages, the pipelined CAM reduces power through 
halting additional searching operations in other pipeline stages. 
The power savings for a 1024×144-bit pipelined CAM is 60% 
compared to a traditional CAM, which is still higher than a 
same-sized SRAM. The CAM size for HAC caches, however, 
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is typically 32×24-bit. To fill the CAM pipeline, the CAM 
should be accessed in each cycle. However, for typical 
embedded processors, which use single-issue in-order core, one 
cache block (which may contain eight instructions) is enough 
for eight processor cycles. In this case, the processor may 
access the instruction cache every eight cycles when instruction 
locality is good, which diminishes the benefits of using 
pipelined CAM. Our technique uses a different method that is 
orthogonal with the pipelined CAM.  

Techniques that use both circuit and organization techniques 
include serially accessed [2] and way-halting [13] cache. 
Serially accessed CAM may prolong the cache access time. 
Way-halting cache needs a specially designed CAM, which 
may not be easily available for embedded system designs. The 
proposed LPHAC reduces power consumption by using less 
CAM without any hardware overhead, special circuit design 
techniques, or special libraries. 

3. Traditional HAC Design 

3.1 Organization 
Figure 1 shows the organization of a traditional 32-way 

HAC at a size of 8kB with a line size of 32 bytes. Two 
organizational techniques are employed to reduce power 
consumption. One is cache memory partition, the other is high 
associativity.  

 The cache memory is aggressively partitioned into eight 
subbanks with a size of 1kB for each subbank. Only one 
subbank is activated during one cache access to reduce the per 
cache access energy. This low power organization comes in 
exchange for performance (cache access time) overhead, since 
the wordline activation and bit-line pre-charging of both CAM-
based tag and SRAM data of subbanks cannot start (to save 
power) until the subbank decoding finishes. This performance 
overhead is intolerable in high performance level-one cache 
designs where the subbank decoding of a high performance 
cache is conducted in parallel with the index decoding. The 
index decoding takes longer time than the subbank decoding 
and so hides the latency of subbank decoding. It should be 
noted that cache memory for high performance level-one 
caches is also partitioned into several subbanks to balance the 
power dissipation, access time, and area. The number of 

subbanks, however, is much lower than that of HAC, e.g., a 
same-sized high performance level cache has only four 
subbanks [8] instead of eight for HAC. 

The HAC uses a fully associative cache, which is efficient in 
reducing misses. However, continuing to increase associativity 
higher than four or eight is not important, since for most 
applications, the miss rate reduction for associativity higher 
than eight or even four is diminishing. Implementing a 4-way 
cache on a 1kB cache block, however, is cumbersome and may 
not be as efficient as a fully associative cache using CAM to do 
the parallel searching. A size of 32 rows of CAM can be 
implemented efficiently in terms of access time and power [6]. 
Therefore, a fully associative cache is adopted for the low 
energy embedded system design. 

3.2 The Problem 
  Figure 2 shows the organization of the one subbank of the 

traditional HAC (a) and the proposed LPHAC (b). The problem 
with the CAM-based HAC is the tag consumes a significant 
portion of the total energy per cache access. Since all bit-lines 
of a CAM subbank are precharged. During a cache access, at 
most, one cache line matches the desired address; therefore, all 
other bit-lines and match lines have to be discharged, which 
makes CAM energy costly. 

4. The LPHAC Design 

4.1 Observation 
We have observed that the function of the CAM tag in a 

traditional HAC is threefold. First, the tag serves as a full tag 
comparison and verifies a cache hit. Second, the CAM tag 
serves as a decoder whose output drives one cache line when 
there is a cache hit. Lastly, the CAM tag provides the cache an 
opportunity to choose a victim from the 32 cache lines.  This 
happens during a cache miss when none of the 32 tags stored in 
the CAM tag matches the desired address. 

For the first function, the entire tag is required to make a full 
comparison. For the second function, however, decoding 32 
cache lines does not need all the 24 tag bits. In fact, 5-bit CAM 
is enough to distinguish the 32 lines. For the third function, a 
victim can be selected from the 32 cache lines for a cache miss, 
since none of the 32 tags matches the desired address. It is well 
known that cache misses occur mostly on the low order bits of 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Traditional highly associative cache with eight subbanks. Each 
subbank is a fully associative cache. BK_EN0 ~ BK_EN7 are used to control 
the activation of the subbanks. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2: Organization of one subbank of original HAC (upper) and the 
proposed LPHAC (lower). 
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the tags [13]. Therefore, we may not need all the tag bits to 
fulfill the third function. We may achieve the similar miss rate 
reductions by using just part of the tag to find the optimal 
victim for a cache miss. 

4.2 Organization 
 Based on the above observation, we propose a new 

organization as shown in Figure 2 (b). We divide the original 
32×24 CAM-based tag into two sub-tags. One is a 32×16 
SRAM-based sub-tag. The other is a 32×8 CAM-based sub-tag. 
The high order tag bits are stored in the SRAM sub-tag, which 
is used to fulfill the first function together with the CAM-based 
sub-tag. The low order tag bits are stored in CAM-based sub-
tag to fulfill the function as a decoder and exploit the 
replacement policy. During a cache miss, for the most part, the 
CAM-based sub-tag does not match the desired address; 
therefore, we can still take full advantage of the replacement 
policy to find an optimal victim. When the misses occur in the 
SRAM sub-tag, then we cannot choose an optimum victim 
from the 32 cache lines. The detailed operation of the proposed 
LPHAC is shown in the following section. It is apparent that a 
wider CAM-based sub-tag catches more misses but consumes 
more power. We determined the optimal CAM-based sub-tag 
width through experiments. 

4.3 Operation of the LPHAC 
We use a simple example to show how the proposed LPHAC 

works. For an address sequence of 0, 1, 3, 7… 0, 1, 3, 7, the 
operation of the proposed LPHAC is as follows: 

 First, during the cache’s cold start, the contents of both the 
SRAM sub-tag and the CAM sub-tag are invalid and updated 
using the desired address. For addresses whose tag bits 
corresponding to the CAM-based sub-tag are different, such as 
addresses 0, 1, 3, and 7, the victim is chosen using the 
replacement policy (least recently used replacement is 
assumed). 

Second, the LPHAC exhibits a miss, but the CAM-based 
sub-tag exhibits a hit. For example, this happens when address 
9 is accessed after the aforementioned address sequence. The 
CAM-based sub-tag is “001” for address 9 (1001). From Figure 
3 (b), the corresponding CAM-based sub-tags are “000”, 
“001”, “011”, and “111”. Since the CAM-based sub-tag of 
address 9 (1001) is “001”, the LPHAC has a CAM sub-tag hit. 

Since only one cache block is activated during an access, the 
address 9 must replace the address 1. In this situation, the 
LPHAC cannot choose a better victim based on the access 
history. If the LPHAC replaces other addresses with address 9, 
then the address 1 must be evicted as well, to maintain unique 
address decoding. This definitely impacts the hit rate 
inadvertently and should be avoided. 

Finally, the CAM-based sub-tag exhibits a miss. This 
happens when address 13 is accessed, since the CAM sub-tag 
of address 13 (1101) is “101”, which is different from the 
contents stored in the CAM sub-tags, which are “000”, ”001”, 
”011”, and ”111”. None of the CAM tags match, and no cache 
line is activated. The victim for address 13 can be chosen from 
any of the cache lines based on the replacement policy. 

5. Experiments 

5.1 Experimental Methodology  
We use miss rate as the primary metric to measure the 

effectiveness of the LPHAC. We configure the SimpleScalar 
[1] as a single-issue in-order processor to collect the miss rate. 
We determine the CAM sub-tag width through 
experimentation. The baseline processor is configured with 
level-one caches of 32-way at size of 8kB with a line size of 32 
bytes for both the instruction and data caches. We ran 10 
MediaBench and all 26 SPEC2K benchmarks using the 
SimpleScalar tool set. The SPEC2K benchmarks were fast-
forwarded for two billion instructions and executed for 500 
million instructions afterwards using reference inputs. For the 
data cache, all results are reported. For the instruction cache, 
the results of benchmarks whose miss rates are less than 0.01% 
are not reported (to save space in the plot), since further 
reducing the miss rate may not be important for these 
benchmarks. These benchmarks include art, bzip, facerec, 
galgel, lucas, mcf, mgrid, swim, and vpr. 

 
 
 
 
 

Figure 3: (a) A traditional HAC.  (b) The proposed LPHAC 
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Figure 4: Data (left) and instruction (right) cache miss rates of MediaBench benchmarks. The number from 5 to 10 represents the width of the CAM sub-tag. 
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5.2 Experimental Results 
Figure 4 shows the miss rates of both data and instruction 

caches for MediaBench benchmarks. Figure 6 and Figure 7 
show the miss rates of instruction and data caches of SPEC2K 
benchmarks, respectively. The bar with “base” represents the 
miss rate of a traditional 8kB HAC, while the other bars with 
numbers from 5 to 11 represent the miss rates of the proposed 
LPHAC with a CAM-based sub-tag width from five to 11 bits. 
The first observation we made is the miss rate reduction is 
diminishing when the CAM-based sub-tag width increases 
higher than eight bits for both instruction and data caches. This 
means the traditional HAC design overuses the costly CAM. 
Therefore, we chose eight bits for the CAM-based sub-tag. The 
corresponding IPC is 0.1% less than the baseline, since some 
benchmarks, e.g. vortex, has a higher miss rate than the 
baseline. 

The second observation we made is that for some 
applications, such as perlbmk, fma3d, and applu, the lowest 
miss rate does not occur at the base situation. This is because 
the least recent used (LRU) replacement policy is not the 
optimal policy. Recall that the LPHAC has a lower number of 
CAM cells in the sub-tag, which makes the real policy 
implemented for the proposed LPHAC different from the 
traditional LRU. For these benchmarks, the modified LRU 

policy at certain CAM sub-tag widths is superior to the 
traditional LRU with full tags implemented using CAM. On the 
other hand, benchmark lucas exhibits the worst miss rate at a 
CAM-based sub-tag width of 11 bits among all the subtag 
widths simulated for data cache. 

6. Analysis 

6.1 Timing Analysis 
Figure 5 (a) shows the timings of a traditional HAC. The 

access to a traditional HAC consists of two phases. In the first 
half-clock cycle, the subbank decoder activates one subbank 
based on the desired address, and then the tag addresses are fed 
to the CAM tag store. Tag comparison is finished before the 
end of the first half-clock cycle. Desired data is read out from 
the SRAM data stored in the second half of the clock cycle. 
The hit signal is generated through ORing the 32 match signals 
from the CAM tag.  

For the proposed LPHAC, the CAM sub-tag comparison 
proceeds faster than the original design, since a 32×8 CAM is 
28% faster than a 32×24 CAM based on our HSPICE 
simulation. 

6.2 Area Savings 
The area saving comes from the fact that less CAM cells are 

used in the LPHAC. The area of the CAM cell is 25% larger 
than the SRAM cell used by data and tag memory. The total 
storage reduction is calculated as 1.6% of the total cache 
storage area. 

6.3 Power Reduction 
The power consumption per cache access is reduced since 

there are less CAM cells for tag store. We measure the 
corresponding power reductions using HSPICE simulation of 

 
 
 
 
 
 
 
Figure 5: Timing analysis, (a) Traditional HAC; (b) The proposed LPHAC. 
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Figure 6: Instruction miss rate of selected Spec2K Benchmarks. base stands for the miss rate of a traditional 32-way cache at size of 8kB. The number from five to 11 
represents the width of CAM sub-tag. 

0%
5%
10%
15%
20%

am
m

ap
p

ap
s ar
t

bz
i

cr
a

eo
n

eq
u

fa
c

fm
a

ga
l

ga
p

gc
c

gz
i

lu
c

m
cf

m
es m
gr pa
r

pe
r

si
x

sw
i

tw
o vo
t

vp
r

w
up Av
e

5 6 7 8
9 10 11 base

 
Figure 7: Data cache miss rate of the whole 26 SPEC2K benchmarks. base stands for the miss rate of a traditional 32-way cache at size of 8kB. The number from 5 to 
11 represents the width of CAM sub-tag. 
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both the traditional HAC and the proposed LPHAC using 
0.18um technology. Figure 8 shows the power consumptions of 
the proposed LPHAC and traditional HAC during cache hits 
and misses. During a cache hit, the power per cache access 
consumption of the proposed LPHAC is reduced by 27% due to 
the reduction of the CAM tag from 24 bits to 8 bits.   

We must point out two subtle situations during a cache miss. 
In a traditional HAC, no SRAM data will be accessed during a 
cache miss. However, the situations are different in the 
proposed LPHAC during a cache miss as shown in Figure 8. 
One situation is that the cache miss happens in the SRAM sub-
tag instead of the CAM sub-tag. Both the SRAM sub-tag and 
the SRAM data are accessed, since the cache miss can only be 
determined after looking up the SRAM sub-tag. Under this 
situation, the proposed LPHAC consumes around 46% more 
power than a traditional HAC on a cache miss. 

Fortunately, this situation happens very infrequently, since 
most misses occur in the CAM sub-tag. The percentage of the 
CAM sub-tag hits during cache misses is shown in Figure 9, 
Figure 10, and Figure 11 for Mediabench and SPEC2k. For 
Mediabench, the CAM sub-tag hit accounts for 6.5% and 1% of 
the total cache misses for data and instruction cache, 

respectively.  For SPEC2K benchmarks, the CAM sub-tag hit 
accounts for 13.8% and 17% of the total cache misses for data 
and instruction cache, respectively. The cache miss rates on 
average, as shown in Figure 4, Figure 6, and Figure 7, are less 
than 1% and 7% for instruction and data cache, respectively. 
Therefore, the extra power consumed due to CAM sub-tag hits 
during a cache miss is very limited.  

The other situation occurs when the cache miss happens on 
the CAM sub-tag, and neither SRAM data nor SRAM sub-tag 
will be read, thus reducing power by 60% compared to the 
traditional HAC on a cache miss. For Mediabench, the CAM 
sub-tag misses account for 93.5% and 99% of the total cache 
misses for data and instruction cache, respectively.  For 
SPEC2K benchmarks, CAM sub-tag misses accounts for 
86.2% and 83% of the total cache misses for data and 
instruction cache, respectively.  

Some benchmarks, however, have a very high CAM sub-tag 
hit rate during cache misses, such as benchmarks ammp and 
gap for instruction caches and benchmarks fma3d and galgel 
for data cache. The CAM sub-tag hit rates for these 
benchmarks are higher than 50%. Figure 14 shows the miss 
rate of benchmark ammp at associativities of 1-, 2-, 4-, 8-, and 
32-way for a traditional cache and at CAM sub-tag width from 
5 to 10 for the proposed LPHAC. The CAM sub-tag hit rate 
remains 100% till CAM sub-tag is 9-bit and is reduced to zero 
when the CAM sub-tag is 10-bit. However, the miss rate 
reduction of the proposed LPHAC at eight bits is already not 
important. Therefore, eight bits are enough for the CAM sub-
tag to reduce the overhead.  

6.4 Energy Evaluations 
In this section, we compare the energy saving of the 

proposed LPHAC with a traditional HAC. There are two main 
components that result in power dissipation in CMOS circuits, 
namely static power dissipation due to leakage current and 

 
 
 
 
 
 
 
 
 

Figure 8: Power dissipation of the proposed LPHAC and traditional HAC 
during cache accesses. 
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Figure 9: CAM sub-tag hit rates during data cache misses for SPEC2K benchmarks. 
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Figure 10: CAM sub-tag hit rates of the instruction cache during cache misses 

for SPEC 2K benchmarks. 
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Figure 11: CAM sub-tag hit rates of both the data and instruction caches during 

cache misses for Mediabench benchmarks. 
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dynamic power dissipation due to logic switching current and 
the charging and discharging of the load capacitance. The static 
energy is proportional to the cache size and execution time of 
an application. The data store of both LPHAC and the 
traditional HAC is identical, and the tag store of LPHAC is 
smaller than that of baseline; however, we do claim this 
reduction. The execution time or IPC of all the benchmarks 
remain almost unchanged, since the miss rate of the proposed 
LPHAC is almost the same with the traditional HAC. 
Therefore, we consider only dynamic energy in our evaluation. 
We evaluate the memory related energy consumption (E_mem) 
including on-chip caches and off-chip memory. Figure 13 lists 
the equations for computing the total memory related energy 
consumption.  

The italic terms are those we obtain through measurements 
or simulations. We compute cache_access, cache_miss, and 
cycles by running SimpleScalar simulations for each cache 
configuration. We compute E_cache_access and 
E_cache_block_refill using Cacti 3.2 and the HSPICE 
simulation for both LPHAC and the baseline.  

The E_next_level_mem includes the energy of accessing off-
chip memory. Using a methodology similar to [12], we 
evaluate the energy of accessing off-chip memory as 50 times 
larger than the on-chip cache.  

Figure 12 shows the energy of the LPHAC normalized to the 
baseline. On average, the LPHAC consumes 13% and 16.5% 
less energy than the baseline for Mediabench and SPEC2K, 

respectively. The greatest energy reduction is seen in fm3d, 
where the energy is reduced by 25.7%. This high energy 
reduction is because the instruction miss rate of benchmark 
fm3d is lower than that of the baseline as explained in Section 
5.2.  The miss rate reduction when using 8-bit CAM based sub-
tag is higher than the baseline where 24-bit CAM based tag is 
used.  

On average, the energy reduction for Mediabench and 
SPEC2K are 13% and 16.5%, respectively.  

7. Conclusion 
We propose a low power design for high associative caches. 

The proposed LPHAC employs an 8-bit instead of 24-bit CAM 
so it consumes less per access power and area than a traditional 
HAC while exhibiting a faster access time. The memory 
accessed related energy reduction can be as high as 25.7% with 
averages of 13% and 16.5% for Mediabench and SPEC2K, 
respectively. Compared with other related low power highly 
associative caches, the proposed LPHAC incurs no hardware or 
software overhead.  
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Figure 12:  Energy reductions of the proposed LPHAC compared to the tradition HAC for SPEC2K and Mediabench benchmarks. 

 
E_mem  =  cache_access * E_cache_access  + cache_miss * E_misses 

E_misses=E_next_level_mem+E_cache_block_refill 
Figure 13: Equations for energy evaluation. 
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Figure 14: Instruction cache miss rates of benchmark ammp at varied 

associativities for a traditional cache and the proposed LPHAC at CAM subtag 
widths from 5 to 10. 




