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Abstract— As the technology scales into 90nm and below,
process-induced variations become more pronounced. In this
paper, we propose an efficient stochastic method for analyzing
the voltage drop variations of on-chip power grid networks,
considering log-normal leakage current variations with spatial
correlation. The new analysis is based on the Hermite polynomial
chaos (PC) representation of random processes. Different from
the existing Hermite PC based method for power grid analysis,
which models all the random variations as Gaussian processes
without considering spatial correlation. The new method focuses
on the impacts of stochastic sub-threshold leakage currents,
which are modeled as log-normal distribution random variables,
on the power grid voltage variations. To consider the spatial
correlation, we apply orthogonal decomposition to map the
correlated random variables into independent variables. Our
experiment results show that the new method is more accurate
than the Gaussian-only Hermite PC method using the Taylor
expansion method for analyzing leakage current variations, and
two orders of magnitude faster than the Monte Carlo method
with small variance errors. We also show that the spatial
correlation may lead to large errors if not being considered in
the statistical analysis.

Index Terms—Power grid networks, Hermite polynomials,
Principal component analysis, Spatial correlation

I. INTRODUCTION

ROCESS-INDUCED variability has huge impacts on the

circuit performance in the sub-90nm VLSI technolo-
gies [10], [9]. One important aspect of the variations comes
from the chip leakage currents. Leakage currents come from
different sources. The dominant factor is the sub-threshold
leakage current. The reason is that sub-threshold leakage
current has a rapid increasing rate (about 5X-10X increase
per technology generation [2]), and it is highly sensitive
to threshold voltage V;; variations, due to the exponential
relationship between sub-threshold current I,y and threshold
voltage V;;, as shown below [14],

Vgs —Vin

Ioff = Iye ™1
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where I is a constant related to the device characteristics,
Vr is the thermal voltage, and n is a constant.

Clearly, the leakage current has exponential dependency on
the threshold voltage V. In the sequel, the leakage current
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is mainly referred to as the sub-threshold leakage current.
Detailed analysis shows that I,r; is also an exponential
function of the channel length L [12]. So, if we model Vy, or L
as the random variables with Gaussian variations due to inter-
die or intra-die process variations, then the leakage currents
will have a log-normal distribution as shown in [12]. On top
of this, those random variables are spatially correlated within
a die, due to the nature of the many physical and chemical
manufacture processes [9].

Due to the importance of the impacts on leakage cur-
rents on the circuit performances, especially on the on-chip
power delivery networks, a number of research works have
been proposed recently to perform the stochastic analysis of
power grid networks under process-induced leakage current
variations. The voltage drop of power grid networks subject
to the leakage current variations was first studied in [3],
[4]. This method assumes that the log-normal distribution of
the node voltage drop is due to log-normal leakage current
inputs and is based on a localized Monte Carlo (sampling)
method to compute the variance of the node voltage drop.
However, this localized sampling method is limited to the
static DC solution of power grids modeled as resistor-only
networks. Therefore, it can only compute the responses to
the standby leakage currents. However, the dynamic leakage
currents become more significant, especially when the sleep
transistors are intensively used nowadays for reducing leakage
powers. In [13], [11], impulse responses are used to compute
the means and variances of node voltage responses due to
general current variations. But this method needs to know the
impulse response from all the current sources to all the nodes,
which is expensive to compute for a large network. In [12],
the probability density function (pdf) of leakage currents are
computed based on the Gaussian variations of channel length.

Recently, a stochastic simulation method for interconnect
and power grid networks has been proposed [7], [15]. This
method is based on the orthogonal polynomial chaos ex-
pansion of random processes to represent and solve for the
stochastic responses of linear systems. The major benefit
of this method is its compatibility with current transient
simulation framework: it solves for some coefficients of the
orthogonal polynomials, which can be done by using normal
transient simulations of the original circuits with deterministic
inputs to compute variances of node responses. Some existing
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approaches [7] model all the parameter variations as Gaussian
(or approximate them as Gaussian variations by using first-
order Taylor expansion) [15]. Those methods also fail to con-
sider the spatial correlation in the process parameter random
variables.

In this paper, we apply the orthogonal polynomial based
methods (also called spectral statistical method) to deal with
leakage current inputs with log-normal distributions and spatial
correlations. We show how to represent a log-normal distri-
bution in terms of Hermite polynomials, assuming Gaussian
distribution of threshold voltage V};, in consideration of intra-
die variation. To consider the spatial correlation, we apply
orthogonal decomposition via principal component analysis
to map the correlated random variables into independent
variables. To the best knowledge of the authors, the proposed
method is the first method being able to perform statistical
analysis on power grids with variation dynamic leakage cur-
rents having log-normal distributions and spatial correlations.
Experiment results show that the proposed method predicates
the variances of the resulting log-normal-like node voltage
drops more accurately than Taylor expansion based Gaussian
approximation method.

II. PROBLEM FORMULATION
A. Power Grid Network Models

The power grid networks in this paper are modeled as RC
networks with known time-variant current sources, which are
obtained by gate level logic simulations of the VLSI systems.
For a power grid (versus the ground grid), some nodes have
known voltage modeled as constant voltage sources. For C4
power grids, the known voltage nodes can be internal nodes
inside the power grid. Given known deterministic vector of
current sources, I(t), the node voltages can be obtained by
solving the following differential equations, which is formu-
lated using modified nodal analysis (MNA) approach,

Gu(t) + CdZ—Ef) = I(t) (2)
where GG is the conductance matrix, C is admittance matrix
resulting from capacitive elements. v(t) is the vector of time-
varying node voltages and branch currents of voltage sources
that we try to solve.

B. Modeling Leakage Current Variations

The G and C matrices and input currents I(t) depend
on the circuit parameters, such as metal wire width, length,
thickness on power grids, and transistor parameters, such
as channel length, width, gate oxide thickness, etc. Some
previous work assumes that all circuit parameters and current
sources are treated as uncorrelated Gaussian random variables
[7]. In this paper, we only consider the log-normal leakage
current variation, due to the channel length variations, which is
modeled as Gaussian (normal) variations [12]. All other circuit
parameter variations can be easily considered as shown in [7].

Process-induced variations can also be classified into inter-
die (die-to-die) variations and intra-die variations. In inter-die
variations, all the parameters variations are correlated. The

worst case corner can be easily found by setting the parameters
to their top range (mean plus three standard deviations). The
difficulty lies in the intra-die variations, where the circuit
parameters are not correlated or spatially correlated. Intra-
die variations also consist of local and layout dependent
deterministic components and random components, which
typically are modeled as multivariate Gaussian processes with
any spatial correlation [1]. In this paper, we first assume we
have a number of transformed ortho-normal random Gaussian
variables £(6),i = 1,...,n, which actually model the channel
length and the device threshold voltage variations. After that,
we consider spatial correlation in the intra-die variation. We
apply the principal component analysis method to transfer
the correlated variables into un-correlated variables before the
spectral statistical analysis.

Let © denotes the process sampling space. Let § € O,
& 0 — R denotes a normalized Gaussian variable and
£(0) =1£1(0), ..., £ (0)] is a vector of n independent Gaussian
variable. Therefore, given the process variations, the MNA for
(2) becomes

du(t)
dt

Note that the input current vector, I(¢,£(6)), has both deter-
ministic and random components. In this paper, we assume
the dynamic currents (power) due to circuit switching are still
modeled as deterministic currents as we only consider the
leakage variations.

The problem we need solve is to efficiently find the mean
and variances of voltage v(¢) at any node and at any time
instance. A straightforward method is Monte Carlo (MC)
based sampling methods. We randomly generate I(t,£(6)),
which is based on the log-normal distribution, solve (3) in
time domain for each sampling and compute the means and
variances based on sufficient samplings. Obviously, MC will
be computationally expensive. However, MC will give the
most reliable results and is the most robust and flexible
method.

Gu(t)+C

= I(t,£(0)) (©)

III. SPECTRAL STATISTICAL BASED SIMULATION

A. Concept of Hermite Polynomial Chaos

In the following, a random variable £(f) is expressed as a
function of 8, which is the random event. Hermite PC utilizes
a series of orthogonal polynomials (with respect to the Gaus-
sian distribution) to facilitate stochastic analysis [16]. These
polynomials are used as the orthogonal basis to decompose a
random process in a similar way that sine and cosine functions
are used to decompose a periodic signal in Fourier series
expansion.

For a random variable v(¢, ) with limited variance, where
& = [&,&,...&,] is a vector of zero mean ortho-normal
Gaussian random variables. The random variable can be ap-
proximated by truncated Hermite PC expansion as follows [6]:

»
v(t,§) =Y arH}(9) “
k=0
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where n is the number of independent random variables,
H} (&) is n-dimensional Hermite polynomials and aj, are the
deterministic coefficients. The number of terms P is given

PZ

where p is the order of the Hermite PC. If only one random
variable is considered, the one-dimensional Hermite polyno-
mials are expressed as follows:

Hy (&) =1, H{ () = & Hy(€)

(n—1+k)!

kl(n —1)! )

=¢3 -3¢,

(6)
Hermite polynomials are orthogonal with respect to Gaussian
weighted expectation (the superscript n is dropped for simple
notation):

=&~ 1,H3()

< Hi(§), H;(§) >=< H}(§) > 0y )

where d;; is the Kronecker delta and < x,* > denotes an
inner product defined as follow:

1
<ﬂ&mo>—;@;;/f@moe

Like Fourier series, the coefficient a; can be found by a
projection operation onto the Hermite PC basis:

<w(t,§), Hy(§) >
< H? (&) >

“38e (8)

ar(t) =

,Vke{0,...,P}. (9

B. Simulation Approach Based on Hermite PCs

In case that v(t, ) is unknown random variable vector (with
unknown distributions) like node voltages in (3), then the
coefficients can be computed by using Galerkin method, which
states that the best approximation of v(t,¢) is obtained when
the error A(¢, &), which is defined as

do(t
Ao = o) + ™ p e o
is orthogonal to the approximation. That is
< A(t,8),Hi(§) >=0,i1=0,1,...,P (11)

In this way, we transform the stochastic analysis process
to a deterministic process, where we only need to compute
the coefficients of its Hermite PC. Once we obtain those
coefficients, the mean and variance of the random variables
can be easily computed as shown later in the section.

For illustration purpose, we consider one Gaussian variable
¢ = [&1] and assume that the node voltage response can be
written as second order (p = 2) Hermite PC:

u(t,€) = vo(t) +vi ()€1 + v2(8)(EF — 1)

assuming that the input leakage current sources can also be
represented by a second Hermite PC:

I(t,€) = Io(t) + I ()& + Lo (8)(&§F — 1)

By applying the Galerkin equation (11) and the orthogonal
property of the various order of Hermite PCs, we end up with
the following equations

12)

13)

dv; (t)
dt

Gui(t) + C—= = L,(t) (14)

where 1 =0,1,2,.., P.
For two independent Gaussian variables, we have
v(t,6) = wo(t) +v1(t)& + va(t)€e + vs(t) (& — 1)
+oa(t)(&5 — 1) + v5(&162) (15)

Assuming that we have a similar second order Hermite PC for
input leakage current I(t, ¢),

It,8) = It)+ L) + L& + () (& — 1)
F1(t)(&5 — 1) + I (&1&2) (16)

The (14) is valid with ¢ = 0, ..., 5. For more (more than two)
Gaussian variables, we can obtained the similar results with
more coefficients of Hermite PCs to be solved by using (14).

Once we obtain the Hermite PC of v(t,£), we can obtain
the mean and variance of v(t,&) trivially as (one Gaussian
variable case):

E(t€) = wo(t)
Var(v(t,€)) vi(t)Var(&) +v3(t)Var(Ef — 1)
03 (t) + 2v5(t)
One critical problem remains so far is how to obtain the

Hermite PC (13) for leakage current with log-normal distribu-
tion. This will be explained in details in the next section.

7)

IV. HERMITE PCS FOR LOG-NORMAL LEAKAGE CURRENT
VARIATIONS

In this section, we present the new method for representing
the log-normal leakage current distributions by using Hermite
PCs with one or more independent Gaussian variables repre-
senting the channel length or threshold voltage variations. Our
method is based on [5] and we will show how it can be applied
to solve our problems for one or more independent Gaussian
variables.

A. Hermite PC representation of log-normal variables

Let g(&) be the Gaussian random variable, denoting thresh-
old voltage or device channel length. Let [(£) be the random
variable obtained by taking the exponential of g(&)

1(&) =7, (&) = In(1(€))

Obviously, for the MOS device leakage current equation (1),
leakage current, I,r; = cI}(Viy,) = ce~Vn where the leakage
component [;(V;p,) is a log-normal random Variable Let the
mean and the variance of g(§) as pg and a , then the mean
and variance of /(&) are

(18)

o2
eltg+—) (19)

(20)

M =

2 2
o2 = eCratod)(eo

—1]

respectively. For a general Gaussian variable ¢g(x), it can
always be represented as

x) = &igs
i=0

where &; are orthonormal Gaussian variables. i.e. < &;,&; >=
dij, < & >= 0 and & = 1. Note that such form can always

21
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be obtained by using Karhunen-Loeve orthogonal expansion
method [6]. In our problem, we need to represent the log-
normal random variable [(£) by using the Hermite PC expan-

sion form: ,
(€)= LH} ()
k=0

2
where [y = explug + %9] To find the other coefficients, we
can apply (9) on [(£). Therefore, we have

< l(t,f), Hk(g) >

(22)

lp(t) = vk 0,...,P}. 23
It was shown in [5], I(§) can be written as
< Hip(¢—g) > 1
1§ = W = exp[ugy + B ng] (24)

j=1

where n is the number of independent Gaussian random
variables.
The log-normal process can then be written as

+Z€lgl+zz 515]’_ ij) )

gigj+---
=1 j=1 §Z§J_5 )

(25)
where g; is defined in (21).
Next, we show the case of two random variables (n = 2).

Assume that £ = [£1, &3] is a normalized uncorrelated Gaussian
random variable vector that represents random variable g(&):
9(§) = pg + 0161 + 0282 (26)
Note that
< (&g — 0yj)* >=< & >=< & >< & >=

Therefore, the expansion of the log-normal random variables
using second order Hermite PCs can be expressed as

o2 o2
l0(1+01§1+0252+71(§12—1) —2(52 -1+
20102€1&2) (27)

1) =

where . 1
2 2

571 + 502)

Hence, the desired Hermite PC coefficients, Iy 1,2.3,4,5, can be

expressed as lo, loo1, looz, 1007, $1003, and 2ly01 07 respec-

tively. Similarly, for four Gaussian random variables, assume

that £ = [£1, &2, &3, £4] is a normalized, uncorrelated Gaussian

random variable vector. The random variable g(£) can be

expressed as

= lo = exp(pg +

1
g=pg+ Z 0i&i (28)

i=1

As a result, the log-normal random variable [(£) can be
expressed as

4 4
=l 1"‘251%"’2 (&-1)o; ZZ §ikjoio;+

(29)

where
4

1 2
= lo = exp(oo + 5 ;Ui)
Hence, the desired Hermite PC coefficients can be expressed
using the equation (29) above. Once we have the Hermite
PC representation of the leakage current sources I(t,¢), the
node voltages v(¢, {) can be computed by using equations (14)
with proper order p of the PCs to obtain all the Hermite PC
coefficients of v(t,£).

V. SPATIAL CORRELATION

In this section, we consider the spatial correlation among
different variations within a die. Spatial correlations exist in
the intra-dia variations in different forms and have been mod-
eled for timing analysis [10], [1]. The general way to consider
spatial correlation is by means of mapping the correlated
random variables into a set of independent variables. This
can be done by using some orthogonal mapping techniques,
such as principal component analysis(PCA). In this paper, we
also apply PCA method in our spectral statistical analysis
framework for power/grid statistical analysis.

A. Concept of Principal Component Analysis

We first briefly review the concept of principal component
analysis, which is used here to transform the random variables
with correlation to uncorrelated random variables [8].

Suppose that x is a vector of n random variables, z =
[x1, 22, ..., 2,]T, with covariance matrix C' and mean vector
te = [Mhwy, ey -y Mo, |- To find the orthogonal random
variables, we first calculate the eigenvalue and corresponding
eigenvector. Then, by ordering the eigenvectors in descending
order eigenvalues, the orthogonal matrix A will be obtained.
Here, A is expressed as

A=Tel el .. el

’r n

(30)

where e; is the corresponding eigenvector to eigenvalue ),
which satisfies

e, =Cep, A\ < Ni—1,1=1,2,....n 31

With A, we can perform the transformation to get orthogonal
random variables y, ¥ = [y1, Y2, ..., Yn]? by using

y =A@ — pa) (32)

where, y; is a random variable with Gaussian distribution. The
mean, [iy,, is 0 and the standard deviation, o, , is /A; on the
condition that [8]

efe;=1,i=1,2,..,n (33)
Here, due to the orthogonal property of matrix A
A7t =AT (34)

To reconstruct the original random variables, we use the
following equation:
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B. Spatial Correlation In Statistical Power Grid Analysis

To consider intra-die variation in V;j, the chip is divided
into n regions. Assuming ® = [®, Do, ..., P,] is a random
variable vector, representing the variation of Vy;, on different
part of the circuit. In other words, in the ith region, the leakage
current I,rr, = cev”l(@i), follows the log-normal distribution.
Here, ®; is a random variable with Gaussian distribution.
1o = [y, by, -y fha, ] 18 the mean vector of ® and C is
the covariance matrix of ®.

With PCA, we can get the corresponding uncorrelated
random variables ¢ = [¢1, da, ..., ¢,] from the equation

¢ =A(® — pa)

Also, the original random variables can be expressed as

(36)

n
(I)l' = Zaij(bj + ,UJ<I>1.,Z. = 1,27 ...n
Jj=1

(37

where a;; is the ith row, jth column element in the orthogonal
mapping matrix defined in (32). ¢ = [d1, P2, ..., Pn] is a
vector with orthogonal Gaussian random variables. The mean
of ¢; is 0 and variance is A, j = 1,2, ..., n. The distribution
of ¢; can be written as

(bi = He; + O—(byéhl =1,2,..,n

é = [él, 52, . ,én] is a vector with orthogonal normal Gaussian
random variables. ®; can be expressed with normal random

variables, 5 [§17£27. 7§n] .
o = Z%‘\/&‘fj Y pe,i=1,2,..n
j=1

With (39), the leakage current can be expanded as Hermite
Polynomial Chaos:

(38)

(39)

n

Z 395 T

I(®;) ~ e®i — 27 1 9i€ithe, _ = pi(

fgék - Jk)
; =+ ...
ST RET 9igk + -.-)

g; = aij\/)\j,j = 1,27...771

Therefore, the MNA equation with correlated random variables
@ in current source can be expressed in terms of uncorrelated
random variables ¢ as follows:
do(t -
aot) + 02 — 1.
dt
With orthogonal property of f, (42) will simply be solved by
using (14), 1 =1,2,..., P.

(40)

Here,
(41)

(42)

VI. EXPERIMENTAL RESULTS

This section describes the simulation results of circuits
with log-normal leakage current distributions for a number
of power grid networks. All the proposed methods have been
implemented in Matlab. All the experimental results are carried
out in a Linux system with dual Intel Xeon CPUs with
3.06Ghz and 1GB memory.

TABLE I
ACCURACY COMPARISON BETWEEN HERMITE PC (HPC) AND TAYLOR

EXPANSION
Og 0.01 0.1 0.3 0.5 0.7
HPC (%) 3.19 | 1.88 | 2.07 5.5 2.92
Taylor (%) | 3.19 | 1.37 | 241 | 16.6 | 24.02

A. Comparison with Taylor expansion method

We first compare the proposed method with the simple
Taylor expansion method for one and more Gaussian variables.
For simplicity, we assume one Gaussian random variable g(¢),
which is expressed as

g = g + Ugg (43)

where £ is a normalized Gaussian random variable with < £ >
=0, and < 52 > = 1. The log-normal random variable (&),
obtained from g(¢), is written as

1§ = e9®) = exp(pg + 048)

Expand the exponential into Taylor series and keep all the
terms up to second order, then we have

1 11
1+ Zfz‘gi + % Z Zfifjgigj +
=0

i=0 j=0
1 1
5:“9 + 2‘7g + (0 + p1g0g)§ +

D)+ ...

(44)

1(€)

= 1+ps+
So2(E -
We observe that the second-order Taylor expansion, as shown
in (45), is similar to second order Hermite PC in (27).
Hence, the Galerkin method can still be applied, we then use
(14) to obtain the Hermite PC coefficients of node voltage
v(t, &) accordingly. We want to emphasize, however, that the
polynomials generated by Taylor expansion in general are not
orthogonal with respect to Gaussian distributions and can’t be
used with Galerkin method, unless we only keep the first order
of Taylor expansion results (with less accuracy). In this case,
the resulting node voltage distribution is still Gaussian, which
obviously is not correct. We note that the first order Taylor
expansion has been used in the statistical timing analysis [1].
The delay variations, due to interconnects and devices, can be
approximated with this limitation. The skew distributions may
be computed easily with Gaussian process.

To compare these two methods, we use the Monte Carlo
method as to measure the accuracies of two methods in terms
of standard deviation. For Monte Carlo, we sample 2000 times
and the results are summarized in Table I. In this table, d,
is the standard deviation of the Gaussian random threshold
voltage Gaussian variable in the log-normal current source.
HPC is the standard deviation from the Hermite PC method
in terms of relative percentage against the MC method. Taylor
is the standard deviation from the Taylor expansion method in
terms of relative percentage against the MC method. We can
observe that when the variation of current source increases,
the Taylor expansion method will result in significant errors
compared to the MC method, while the proposed method

(45)
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TABLE 1I
CPU TIME COMPARISON WITH THE MONTE CARLO METHOD

Ckt #node | p | n MC(s) HPC(s) (Speedup|
gridrc_3 33 2 |1 5.39 0.006 |898.33
lgridrc_10 1720 2 |1 60506.25 61.48 [984.16
leridrc_12 3024 2 121 313x10° 625.63 |499.61
leridrc_67 7400 212 N/A 1979 N/A

has the smaller errors for all cases. This clearly shows the
advantage of the proposed method.

B. Examples without Spatial Correlation

In the case of two random variables with one large and
the other small standard deviations, the larger one dominates,
which shows the shape of log-normal as in Fig. 1.

To consider multiple random variables, we divide the circuit
into several partitions. We first divide the circuit into two parts.
Fig. 1 shows the node voltage of one node of a particular
time instance of a ground network with 336 nodes with
two independent variables. The standard deviations for two
Gaussian variations are 041 = 0.5, 040 = 0.1. The 36
variations are also marked in the figure. Table II shows the

Distribution of voltage at given node (two variables, ¢ = 0.1 and 0.5)
200 T T T T

180 mn b

1204 —pn-3% - —n+3% 4

Number of occurances
-
)
3
T
L

. b .
0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0.45
Voltage (volts)

Fig. 1. Distribution of the voltage in a given node with two Gaussian
variables, 041 = 0.1 and 042 = 0.5

speedup of the Hermite PC method over Monte Carlo method
with 3000 samples. In this table, #node is the number of nodes
in the power grid circuits. p is the order of the Hermite PCs and
n is the number of independent Gaussian random variables.
HPC and MC represent the CPU times in seconds used for
Hermite PC and MC method respectively. It can be seen that
the proposed method is about two order of magnitude faster
than the MC method. When more Gaussian variables are used
for modeling intra-die variations, we need more Hermite PC
coefficients to compute. Hence, the speedup will be smaller if
the MC method uses the same number of samples as shown in
gridrc_12. Also, one observation is that the speedup depends
on the sampling size in MC method. We found that 2000 to
3000 samples are the reasonable numbers to have good MC
results. Note that the large-sized circuit, such as gridrc_ 67,
is unable to finish within reasonable time using MC. The
advantage of HPC is obvious as shown in the table.

C. Examples with Spatial Correlation

To model the intra-die variations with spatial correlations,
we divide the power grid circuit into several parts. We first

TABLE III
COMPARISON BETWEEN NON-PCA AND PCA AGAINST MONTE CARLO
METHODS
Mean Std Dev
ckq #nodes Non-PCA PCA Non-PCA | PCA
% error % error % error % error|

1 336 10.3 0.52 18.8 1.13

2 645 8.27 0.59 11.4 1.16

3] 1160 10.8 0.50 2.6 0.73

consider that circuit is partitioned into two parts. In this case,
we have two independent random current variables, &; and &s.
The correlated variables for the two parts are ®; = &1 + 0.5&2
and &9 = & + 0.5¢; respectively as shown in Fig. 2.
Table III shows the error percentage of mean and standard

P =§1 +0.582 | P2 = &2+ 0.56

Fig. 2. Correlated random variables setup in ground circuit devided into two
parts

deviation of the comparison between Monte Carlo and HPC
with Principal Component Analysis(PCA) and the comparison
between Monte Carlo and HPC without PCA. As shown in
the table, it is necessary to use PCA when spatial correlation
is considered. Fig.3 shows the node voltage distribution of one
certain node in a ground network with 336 nodes, using both
PCA and non-PCA method. To get more accuracy, we divide

Distribution of voltage considering spatial correlation(two variables)
350 T T T T T

T T T
dotted line:Monte Carlo

solid line:HPC with PCA i
dashed line:HPC without PCA

300 ™
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3
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=
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T
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3
T
L

@
S
T
L

. . PR
-0.02 0 002 004 006 008 01 012 014 016
Voltage(volts)

Fig. 3. Distribution of the voltage in a given node with two Gaussian variables
with spatial correlation

@1={1+0.5{2+0.5{3 | @3={3+0.5{1+0.5¢4

G2=72+40501+0.574 | @4=14+0.502+0.53

Fig. 4. Correlated random variables setup in ground circuit divided into four
parts

the circuit into four parts and each part has correlation with
its neighbor as shown in Fig.4. ¢ is the correlated random
variable vector we use in the circuit. { = [(1, (2, (3, (4]
are independent Gaussian distribution random variables with
standard deviations (; = 0.1, (2 = 0.2, (3 = 0.1 and {4 = 0.5.
Fig.5 is the voltage distribution of a given node. The mean
voltage and voltages of worst case are given as the blue line.
Note that the size of the ground networks we analyzed is
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Distribution of voltage considering spatial correlation(four variables)
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Fig. 5. Distribution of the voltage in a given node with four Gaussian
variables with spatial correlation

mainly limited by the solving capacity of Matlab on a single
Intel CPU Linux workstation. Given long simulation time due
to large Monte Carlo sampling runs, we limit the ground
network size to about 3000 nodes.

Also note that for more accurate modeling, we need to
have more partitions of the circuits and thus more independent
Gaussian variables are needed as shown in [1].

VII. CONCLUSION

In this paper, we have proposed a new stochastic simulation
method for fast estimating the voltage variations due to the
process-induced log-normal leakage current variations with
spatial correlations. The new analysis is based on the Hermite
polynomial chaos (PC) representation of random processes.
We extended the existing Hermite PC based power grid analy-
sis method [7] by considering log-normal leakage distribution
with spatial correlations, instead of Gaussian current distri-
bution without spatial correlations. Our experimental results
show that the new method is more accurate than the Gaussian-
only Hermite PC using the Taylor expansion method for
analyzing leakage current variations and two orders of mag-
nitude faster than Monte Carlo methods with small variation
errors. In the presence of spatial correlations, methods without
considering the spatial correlations may lead to large errors,
roughly 8%-10% in our tested cases. However, our proposed
method leads to about 1% or less of errors in both mean and
standard deviations.
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