
Iterative-Constructive Standard Cell Placer for High
Speed and Low Power

Sungjae Kim and Eugene Shragowitz
Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455

Email: {sukim, shragowi}@cs.umn.edu

Abstract— Timing and low power emerge as the most impor-
tant goals in contemporary design. Meanwhile, the majority of
placement algorithms developed by industry and academia still
compete on the bases of the shorter combined interconnection
length. In this paper, we present a standard cell placer that has
timing and power minimization as main goals and is substantially
superior in this respect to the popular commercial timing-driven
placer. Simultaneously, the new placer is at least as good as
the commercial placer w/r to the combined interconnection
length. The improvement in timing and power is achieved by
careful balancing between iterative and constructive parts of the
placement procedure implemented by dynamic reevaluation of
constraints for the constructive part of the algorithm. The new
placer improves timing by 23% on the average, or for the same
timing, reduces power by 14% on the average. It runs more than
2 times faster than the commercial tool.

I. INTRODUCTION

Timing, power, and their trade-offs are central to
contemporary design. These problems emerge in block design
as well as in SoC design. Placement tools play a central
role in achieving these goals due to rising importance of
interconnects for timing and power consumption. While, in
many synthesis systems, driver sizing is decided on synthesis
step, it is very beneficial to allow a placer to include driver
resizing in the set of parameters determined by placement.

The placer described in this paper denoted in the text as
the ICP (Iterative-Constructive Placer) combines coarse-grain
timing-driven partitioning in the Initial Step with the adaptive
timing-driven construction of rows and selection of driver
sizes.

A bibliography on placement algorithms is very large. The
recent comprehensive review of placement algorithms is given
in [1]. In this review, two papers [2], [3] are mentioned in
a category of algorithms that use coarse placement solutions
to guide delay budgeting step. This category is, probably,
the closest in goals to our work. In [2], LP model is
used to influence timing on each level of the partitioning
process. Timing-driven Dragon [3] combines timing budgeting
based on modification of Zero-slack algorithm [4] with the
quadrasection approach. According to the tables given in the
paper, timing-driven Dragon was marginally better than the
Cadence QPlace in timing, while 10-15 times slower.

There are fundamental differences between the works cited
above and our work.

1. In works that belong to this group, bounds on net delay
are derived from the coarse placement, while in our work,
coarse placement is derived from the delay bounds.

2. Delay bounds in [3] are computed by the modified
Zero-slack algorithm, while in our work, the IMP algorithm
(Iterative Minmax Pert) [5] that provides the optimal values
of bound is applied.

3. Actual placement in aforementioned works is iterative.
For example, in [3] clusters of cells are moved by the
SA (Simulated Annealing) algorithm. In our work, actual
placement of cells is constructive, i.e. new cells are
added to the partial solution. The placement process is
controlled by dynamic evaluation of criticality for non-placed
nets. Criticality, in its own term, is defined by dynamic
recomputation of net delay bounds. The method of delay
bounds conversion to the criticality metrics is given in the
paper. The placement problem even for one row is NP-hard.
We derived conditions for the optimal solution using a
notion of the ”feasible region” and developed a constructive
procedure that in many occasions delivers the low bound
solutions. This constructive procedure is very fast and
produces placement that is correct-by-construction in terms
of constraints.

4. Gate resizing is available in the ICP as a part of
a net placement. This feature allows to improve results
substantially. No such capabilities are observed in the
aforementioned group of algorithms.

The rest of the paper is organized as follows: In Section
2, a brief overview of the algorithm is provided. Section
3 presents the initial step of the ICP. Section 4 describes
general adaptive step of the placer. Section 5 presents final
optimization step. Experimental results are given in Section
6, followed by Conclusion in Section 7.

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

Netlist
(.v)

Timing Library
(.lib)

Physical library
(.lef)

Floorplan
(.def)

Netlist
(.v)

Timing Library
(.lib)

Physical library
(.lef)

Floorplan
(.def)

Optimized
placement (.def)

New netlist (.v) Optimized
placement (.def)

New netlist (.v)

Partial
Placement

Constraints

Row-by-row Construction of the Next Set of Rows

Constraints

Placement

Initial
Step

General
Adaptive

Step

Final
Optimization

Location Assignment

Candidate Selection

Delay Bound & Net Criticality Recomputation

Gate Resizing for Non-placed Cells
w/r to Net Criticality & Partitions

Location Reassignmnet

Cell Orientation Optimization

I/O Assignment

Initial Delay Bound & Net Criticality Computation

Circuit Partitioning w/r to Net Criticality

Gate Sizing w/r to Net Criticality & Partitions

Fig. 1. Overall structure.

II. OVERVIEW OF THE ALGORITHM

The algorithm consists of 3 main parts: Initial Step,
General Adaptive Step, and Final Optimization. Figure 1
shows the structure of the proposed algorithm.

The Initial Step starts with computing delay bounds and
criticalities of all nets in design. Computed net criticalities are
used as weights to guide recursive circuit partitioning. Gates
in the original net list are resized based on net criticalities
and delay bounds.

The General Adaptive Step performs constructive placement
row-by-row. Construction of each row includes candidate
selection based on timing criticality and accumulated length
of interconnection to already placed cells for each candidate
cell. Cells are placed in positions that minimize timing and
interconnection length. After several rows are placed, the
delay bounds for non-placed nets are recomputed to reflect
results of partial placement, and drivers of these nets are
resized to reflect changes in delay bounds. New delay bounds
are used for the next iteration of the General Adaptive Step.

The Final Optimization Step minimizes interconnection
length in the already completed placement by making cells
in one row movable and all others fixed. The same location

assignment algorithm, that originally was used in the General
Adaptive Step, is applied for this purpose.

III. INITIAL STEP

In this section, algorithms used in the initial step are
described. The same delay bound, net criticality computation,
and gate sizing are used in the general adaptive step.

A. Net Delay Bounds

Importance of timing budgeting on different stages of VLSI
design has been recognized for some time. Computation
of bounds on net delays plays an important role in timing
budgeting for floorplanning and placement. Two groups
of algorithms were introduced for computing bounds: The
Zero-slack algorithm [4] and the IMP algorithm [5]. The
Zero-slack algorithm finds a node with the minimal positive
slack and distributes it along the single path. This algorithm
was used in [3]. The IMP algorithm finds slacks at all
circuit outputs and distributes them globally based on circuit
topology and physical characteristics of nets, i.e. nets with
similar physical characteristics may have different bounds
depending on their position in the circuit. The IMP algorithm
was used in such system-design tools as IBM’s HDP [6],
Chip Architect from Synopsis and some others.

In the ICP, delay bounds are computed repeatedly by
the IMP algorithm, first in the Initial step (Figure 1) to
be used in circuit partitioning and gate sizing, and then
recomputed after placement of each next set of rows
for the purpose of ordering cells for placement and gate
resizing. As a result, delay bounds play a much stronger
role in this tool than in other previously introduced algorithms.

B. Net Criticality Metric

Prior to the net placement, net criticality could be defined
as:

Net Criticality Metric =
Projected Net Delay

Net Delay Bound
(1)

Projected Net Delay is difficult to compute prior to layout. But,
for the purpose of ranking, it is sufficient to find such approx-
imation of Projected Net Delay that is easily computable and
to retain ordering of nets in ranking. Under the assumption
about normal distribution of the probability density function
f(x), the Net Criticality Metrics can be rewritten as

Net Criticality Metric =
2mx

bx
(2)

where mx is mathematical expectation of f(x), i.e. the center
of the interval for possible values of random variable x
(projected value of net delay) and bx is a net delay bound.
The net delay characteristics of the circuit, i.e. mathematical
expectation of net delay m(x) could be derived from the sta-
tistical data. However, such statistical data are also unknown.

But, normal distribution is characterized by a linear regression
function m(x) = αx∗, where x∗ is a net parameter.

m(x2)
b2

>
m(x1)

b1
⇔ x∗

2

b2
>

x∗
1

b1
(3)

i.e. ranking of nets is preserved when mathematical expec-
tation of a net delay is replaced by a net parameter, i.e.
relation x∗

i /bi can be used for net ranking [7]. Therefore, Net
Criticality for the purpose of ranking nets could be computed
as:

Net Criticality Metric∗ =
Net Parameter

Net Delay Bound
(4)

In our current implementation, we used the number of pins
as the Net Parameter.

C. Circuit Partitioning

The ICP uses a state-of-the-art min-cut hypergraph
partitioner [8]. Unlike other partitioning-based systems,
which produce fine-grain partitions [3], [9], the ICP produces
the coarse partitions (200-300 gates on the average for
each partition). Hypergraph partitioners allow to assign
different weights to edges and to target different functions
in the partitioning process. In our case, weights are used to
influence timing. They are derived from the net criticality
metrics. Partitioning proceeds recursively until partitions
achieved the size limit.

D. Gate Sizing

Gate resizing is a traditional technique to improve timing.
Typically this technique is used either before or after physical
design and leads to increase in number of iterations and
design time. The ICP allows to merge this step with the
placement. Gate resizing for the standard cell placer is
implemented as selection of the new gate sizes from the
standard cell library. The drivers of nets with the high values
of Net Criticality Metric are selected for upsizing. Reduction
of delays on such nets may reduce delays of the critical paths.
Constraints in upsizing algorithm come from the potential
capacitance limit violation for drivers of upsized cells, as well
as from the ability of partitions to accommodate larger cells.
After the new sizes are selected, the new utilization factors
are generated based on the area increments and remaining
capacities of partitions.

If the Net Criticality Metric is low, the driver of such net
could be downsized. The downsizing is constrained by the
net delay bounds. The new gate size is selected in such way
that the increased delay ≤ the net delay bound. The smallest
gate size that satisfies this constraint and does not violate the
capacitance limit is selected as the new size of the gate.

IV. GENERAL ADAPTIVE STEP

The general adaptive step consists of several major tasks:
- Recomputation of net delay bounds.
- Candidate selection for placement inside the slice with the
substeps:

-Feasible region identification
-Feasible region verification

- Cell location assignment

A. Adaptive Timing Budgeting

Because the partial placement provides more realistic data
on actual delays of placed nets, this information should be
taken into account in recomputing delay bounds of non-
placed nets. The adapted bounds will guide the placement of
non-placed cells. Figure 2 shows an example.

n1

G1

G2

G3

G4
n2

n3
n4

(a)

n1
G1

G2

G3

G4

n2

n3
n4

(b)

Fig. 2. Timing rebudgeting.

In Figure 2(a), the cells G1, G2, G3, and G4 have not been
placed yet. After iterations of construction process, G1 and
G2 are placed as shown in Figure 2(b). After the placement
of G1 and G2, delay of the net n1 is reevaluated and the net
delay bounds for n2, n3, and n4 are recomputed.

The exact routed wire length of net n1 cannot be computed
in the placement stage because it is determined by a router
after placement. The ICP, however, can compute the exact
HPWL from the partial placement. Using the HPWL,
resistance and capacitance of the net are estimated from the
wire load table of the standard cell library. The estimated
resistance and capacitance are used to compute the delay of

net n1 using the RC delay model.

Without this adaptive timing rebudgeting in response to the
dynamic delay change, the paths which were not critical may
emerge as the critical paths.

B. Candidate Selection

Figure 3 illustrates the candidate selection process. Dark
region is a partial placement.

Partition i Partition j Partition k

Partition l Partition m Partition n

Candidates

Candidate selection

Fig. 3. Partial placement and candidate selection.

Candidate cells are selected for each slice defined as a
part of the row inside of one partition. Before the selection
of candidates, the total available routing tracks and the slice
capacity are computed. The Cell Criticality is calculated for
all non-placed cells in the partition. The cells are sorted by
the values of Cell Criticality Metrics and placement starts
from the cell with the highest value of Cell Criticality. The
feasible region for a candidate is identified and verified. The
candidate cells which have the verified feasible region are
selected for placement in the slice. After the selection of each
candidate, the total available routing tracks and capacity of
the slice are updated.

1) Cell Criticality Metric: Criticality metric for cells is
defined based on criticality of the nets incident to the cell
weighted by coefficients measuring connectivity to already
placed and not yet placed cells. The general form of the
criticality metric for a cell C is defined as:

Cell Criticality Metric(C) =
∑

n∈C

NCMn × CPn, (5)

where NCMn = Net Criticality Metric of net n and CPn

= connectivity to the partial placement of the net n. CPn is
given by (# of placed cell in net n / # of pin of net n). In
fact, based on the previous consideration, for the purpose of
cell ordering, this measure could be replaced by

Cell Criticality Metric(C) =
∑

n∈C

NCM∗
n × CPn, (6)

where NCM ∗
n is presented in the form x∗

i /bi.

2) Feasible Region Identification: The feasible region for
the candidate cell is a region in a row where the sum of the
horizontal components of connections to the already placed
incident cells is a minimal constant.

The placement of the newly selected candidate increases
the wire length of the partial placement. Increment should be
minimized by placing the candidates in their feasible regions.
Figure IV-B.2 shows examples of feasible regions.

Partial
placement

Feasible region

N1

N2

C

x1 x2 x1x3 x4

(a)

Partial
placement

Feasible region

C

N1
N2

x1 x2 x1x3 x4

(b)

Fig. 4. Examples of feasible regions.

In Figure IV-B.2, the candidate cell C is considered. C
is connected to the nets N1 and N2. N1 and N2 have other
already placed cells in the partial placement. In (a), the
horizontal coordinates of N1 and N2 are [x2 x3] and [x1 x4].
For any position of the cell C in the region [x2 x3], the sum
of horizontal components of new connections to the nets N 1

and N2 is the minimal constant. In case (b), the feasible
region is defined as [x2 x3] and the minimal size of the
horizontal components is (x3 − x2).

3) Feasible Region Verification: The feasible region for
the candidate could be already occupied by the candidates
with the higher criticality values. So, the availability of the
space in the feasible region for placement of the candidate
should be verified before placing it. For the purpose of
verification, all candidate cells are assumed to be placed in
the centers of their feasible regions. The capacity of the
feasible region is FRmax − FRmin, where FRmax and
FRmin are maximum and minimum X-coordinates of the
feasible region respectively. The sum of widths of already
selected candidates, which are assumed to be placed in
[FRmin FRmax], is computed. If capacity is greater than the
(sum + the width of the candidate), the candidate is finally
selected for placement and guaranteed to be placed in the

feasible region. Otherwise, the candidate is deferred to the
next row. However, there are cases where deferring increases
vertical connection to such extent that the total wire length
increment is larger than the horizontal connection increment
for placing the candidate out of the feasible region. In such
cases, the candidate is still selected for placement in the row
and its feasible region is extended.

If the verification of the feasible region for a candidate
fails, the candidate is not considered again for the selection
in the row and delayed for the next row.

C. Cell Location Assignment

After feasible region identification and verification, the
selected candidates are placed in their feasible regions. The
location assignment algorithm produces overlap-free partial
placement. The search for the optimal location with the
minimal length of interconnection for each candidate inside
the feasible region is performed by the linear complexity
search of all possible locations.

V. FINAL OPTIMIZATION

In the final optimization step, the locations of all cells
are reassigned to their best position in a row by a backward
propagation path from the last row assigned to the first
row using the same location assignment algorithm as in the
general adaptive step.

Proper cell orientations decrease the wire length and
increase routability. For each cell, the HPWLs for the current
and flipped orientation are computed. The orientation with
the smaller HPWL is assigned as the final orientation of the
cell.

The ICP can handle both the fixed and non-fixed I/O pins.
The fixed I/O pins affect the feasible region identification
for the cells connected to I/Os during the construction
process. The non-fixed I/O pins are placed as regular cells
after placement of all cells is completed. The only difference
is that their potential locations are on the periphery of the chip.

VI. EXPERIMENTAL RESULTS

The ICP was implemented in the C language. 18 large test
cases were selected from ITC’99 [10] benchmark suites. The
test cases were mapped to the 0.18µm, 5-metal layer standard
cell library provided by Virtual-Silicon Technology Inc. [11].
Table 1 summarizes the statistics of the benchmark suite.
All the experiments were performed on Sun UltraSPARC
machines with the 1.5GHz CPU and 1GB memory.

The results were compared with the leading-edge industry
placer, the Cadence AMOEBA placer (SOC Encounter
v4.1, May 2005) in the timing-driven placement mode. The

TABLE I

BENCHMARK STATISTICS.

Ckt #Gates #Nodes #Rows
b05 961 974 25
b12 1065 1072 30

b14 1 6814 6848 67
b15 8816 8854 80
b14 10012 10070 81

b15 1 12992 13032 93
b20 1 14389 14425 98
b21 1 14388 14470 98
b20 20172 20208 115
b21 20517 20609 116

b22 1 21718 21816 121
b22 29897 30005 140
b17 32192 32511 150

b17 1 39531 40128 163
b18 1 108423 109629 268
b18 114562 115780 275

b19 1 219373 221769 381
b19 231269 233685 391

initial floorplans were produced by the SOC Encounter with
utilization factor 0.85 and the same floorplans were applied to
the AMOEBA and to the ICP for each test case. All placement
results were sent to the Cadence WRoute for routing. Every
wire length reported in the following experiments is the
routed wire length produced by the WRoute. Every placement
produced by the AMOEBA and the ICP was successfully
routed by the WRoute without any violations. Timing analysis
and power estimation were performed by the Cadence SOC
Encounter.

Table 2 summarizes the experimental results. Columns 2-4
show the critical path delays produced by each placer and
their comparison. As data show, the ICP produces solutions
with 23% better timing than the timing-driven mode of the
AMOEBA on the average.

The experimental results on power consumption are
presented in columns 5-7. Because the power consumption of
a circuit is proportional to the clock speed, circuits with the
shorter delay consume more power. For the fair comparisons,
the same clock speeds, which were defined by the AMOEBA
solutions, are used in comparison of power estimations for
both solutions in the same test case. The power consumption
of solutions produced by the ICP is 14% smaller than
solutions from the AMOEBA on the average.

In Table 2, columns 8-10 show data on wire length. The
ICP produces as good wire length as the AMOEBA does,
i.e. improvement in timing by the ICP is achieved without
increase in wire length.

Run times are summarized in columns 11-13 of Table 2. As
can be seen, the ICP is 2.19 times faster than the AMOEBA
on the average.

TABLE II

EXPERIMENTAL RESULTS.

Ckt Delay (ns) Power (mw) Wire Length (µm) Run Time (sec)
AM ICP ICP

AM
AM ICP ICP

AM
AM ICP ICP

AM
AM ICP SpeedUp

b05 1.375 1.265 0.92 14.03 12.87 0.92 23188 23090 1.00 2 2 1.00
b12 1.167 0.998 0.86 17.70 16.45 0.93 30869 30343 0.98 2 2 1.00

b14 1 3.472 3.033 0.87 47.34 38.63 0.82 218774 229242 1.05 24 12 2.00
b15 5.093 4.407 0.87 39.84 36.34 0.91 368319 380230 1.03 43 19 2.26
b14 4.489 3.373 0.75 52.96 41.27 0.78 325605 308941 0.95 38 23 1.65

b15 1 3.514 3.260 0.93 78.98 70.05 0.89 454143 451851 0.99 45 24 1.88
b20 1 6.917 3.374 0.49 48.15 40.78 0.85 480349 454253 0.95 59 32 1.84
b21 1 5.452 3.525 0.65 61.49 50.69 0.82 479643 466506 0.97 60 31 1.94
b20 7.324 4.561 0.62 62.08 53.36 0.86 649549 630226 0.97 103 43 2.40
b21 6.313 4.794 0.76 69.78 60.89 0.87 662127 637840 0.96 97 45 2.16

b22 1 7.891 6.329 0.80 65.01 54.27 0.83 752695 731909 0.97 102 48 2.13
b22 7.379 5.357 0.73 104.38 85.03 0.81 993037 1000694 1.01 181 68 2.66
b17 7.972 5.650 0.71 93.75 83.54 0.89 1365154 1345432 0.99 235 82 2.87

b17 1 5.500 3.752 0.68 158.84 134.38 0.85 1469435 1469378 1.00 379 194 1.95
b18 1 5.523 4.681 0.85 437.14 379.01 0.87 3746058 3686867 0.98 1773 471 3.76
b18 6.125 4.777 0.78 409.10 357.91 0.87 4104256 3784747 0.92 1822 492 3.70

b19 1 6.977 5.484 0.79 666.67 584.28 0.88 7538895 7612921 1.01 2812 1328 2.12
b19 6.319 5.613 0.89 739.48 661.28 0.89 7888017 8108235 1.03 2848 1402 2.03
Avg. 0.77 0.86 0.99 2.19

TABLE III

EXPERIMENTAL RESULTS WITHOUT GATE SIZING.

Delay Power Wire Length SpeedUp
Avg. 0.91 0.95 0.98 2.48

Table 3 shows the experimental results with the gate-sizing
option of the ICP disabled. Compared with the timing-
driven mode of the AMOEBA, the ICP without gate sizing
produces solutions with 9% better timing, 5% smaller power
consumption, and 2% shorter wire length on the average.
The ICP without gate sizing is 2.48 times faster than the
AMOEBA. These results show that the gain in performance
of the ICP over the AMOEBA depends only partially on the
gate sizing.

VII. CONCLUSION

We have presented a fast iterative-constructive standard
cell placer, the ICP, which can integrate gate sizing in the
placement step. The ICP is implemented as a dynamically
adaptable structure capable of adjusting parameters of the con-
structive placement procedure. This type of structure allows
easy modifications and has flexibility in emphasizing selected
goals. When compared with the timing-driven AMOEBA, the
ICP produces solutions with the average improvement by 23%
in timing, 14% in power dissipation and 2.19 times faster run
time.

REFERENCES

[1] J. Cong, T. Kong, J. Shinnerl, M. Xie, and X. Yuan, ”Large Scale Circuit
Placement,” In ACM Transaction on Design Automation of Electronic
Systems, Vol. 10, No. 2, pp. 389-430, 2005.

[2] B. Halpin and C. Chen and N. Sehgal, ”Timing Driven Placement using
Physical Net Constraints,” In Proc. of Design Automation Conference, pp.
780-783, 2001.

[3] X. Yang, B. Choi, and M. Sarrafzadeh, ”Timing-Driven Placement using
Design Hierarchy Guided Constraint Generation,” In Proc. of Interna-
tional Conference on Computer-Aided Design, pp. 177-180, 2002.

[4] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa, ”Generation of
Performance Constraints for Layout,” In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 8, No. 8, pp. 860-
874, 1989.

[5] H. Youssef, R. Lin, and E. Shragowitz, ”Bounds on Net Delays for VLSI
Circuits,” In IEEE Transactions on Circuits and Systems, Vol. 39, No.
11, pp. 815-824, 1992.

[6] J. Y. Sayah et. al., ”Design planning for high-performance ASICs”, In
IBM Journal of Research and Development, Vol. 40, No. 4, pp. 431-452,
1996.

[7] H. Chang, E. Shragowitz, J. Liu, H Youssef, B. Lu, and S. Sutanthavibul,
”Net Criticality Revisited: An Effective Method to Improve Timing
in Physical Design,” In Proc. of International Symposium on Physical
Design, pp. 155-160, 2002.

[8] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, ”Multilevel Hy-
pergraph Partitioning: Application in VLSI Design,” In Proc. of Design
Automation Conference, pp. 526-529, 1997.

[9] A. E. Caldwell, A. B. Kahng, and I. L. Markov, ”Can Recursive Bisection
Alone Produce Routable Placements?,” In Proc. of Design Automation
Conference, pp. 477-482, 2000.

[10] ITC99 Benchmarks, http://www.cerc.utexas.edu/itc99-
benchmarks/bench.html.

[11] Virtual-Silicon Technology Inc., http://www.virtual-silicon.com.

