

Abstract—Reliability becomes a key issue in computer system

design as microprocessors are increasingly susceptible to
transient faults. Many previously proposed schemes exploit
simultaneous multithreaded (SMT) architectures to achieve
transient-fault tolerance by running a program concurrently on
two threads, a main thread and a redundant checker thread. Such
schemes however often incur high performance overheads due to
resource contention and redundancy checking.

In this paper, we propose dual-thread execution (DTE) for
SMT processors to efficiently achieve transient-fault tolerance.
DTE is derived from the recently proposed fault-tolerant
dual-core execution (FTDCE) paradigm, in which two processor
cores on a single chip perform redundant execution to improve
both reliability and performance. In this paper, we apply the same
principles as in FTDCE to SMT architectures and explore fetch
policies to address the critical resource-sharing issue in SMT
architectures. Our experimental results show that DTE achieves
an average of 56.1% speedup over the previously proposed
simultaneously and redundantly threaded processor with
recovery (SRTR). More impressively, even compared to
single-thread execution, DTE achieves full-coverage
transient-fault tolerance along with an average of 15.5%
performance improvement.

Index Terms—Fault tolerance, microprocessors,
multi-threaded architectures, redundant systems.

I. INTRODUCTION
URRENT trend in semiconductor technology features
faster transistors, higher integration density, and lower

supply voltages. While this trend improves processor
performance and reduces transistor-power consumption, it
results in increased susceptibility to transient faults for modern
microprocessors.

To protect program execution against transient faults, one
promising approach is redundant execution using
leader/follower architectures [1], [7], [11], [12], [13], [14],
 [15], [18], [21], in which a program is redundantly executed by a
leading thread and a trailing thread. The execution results from
the two threads are compared to detect transient faults. If the
execution results are committed only after redundancy
checking, fault tolerance can also be achieved by rewinding
both threads to the most recently committed execution state
when an error is detected. The leading thread and the trailing

thread may run on different processor cores in chip
multiprocessors (CMPs) [1], [7], [15] or share a single processor
with simultaneous multithreading (SMT) [12], [13], [18].

In most leader/follower schemes for fault tolerance, the
leader is the main thread while the follower serves as a checker
thread providing redundant execution. Although the leading
thread results, such as load values and branch outcomes, can be
exploited to speedup the trailing checker thread, the overall
execution may still suffer from significant performance
overheads. The main reasons include (a) delayed instruction
commitment in the main thread as instructions such as stores
can only commit after redundancy checking, which results in
the increased pressure on critical resources like the load/store
queue (LSQ); and (b) resource contention between the two
threads, especially when they share a SMT processor. In this
paper, we propose a new scheme, named dual-thread execution
(DTE), to efficiently achieve transient-fault tolerance for SMT
architectures.

DTE is derived from the recently proposed fault-tolerant
dual-core execution (FTDCE) paradigm [21]. In FTDCE, a
program is executed by two processor cores on a single chip,
the front processor and the back processor. The front processor
speculatively executes instructions by invalidating long-latency
cache-missing loads and their dependent instructions. The back
processor re-executes the instructions retired by the front
processor to ensure correctness and provide redundancy
checking. In this way, both significant performance
enhancement and fault tolerance can be achieved
simultaneously (a more detailed background on FTDCE is
described in Section 2.2). In this paper, we extend the same
principles of FTDCE to SMT architectures. In other words, in
DTE, a program is executed redundantly by a front thread and a
back thread on a SMT processor and the threads process
instructions in a similar way to the front and back processors in
FTDCE.

As DTE is built upon SMT architectures, a key issue to
address in DTE is resource contention between the two threads.
In this paper, we propose and evaluate various resource sharing
policies. Our experiments show that with a carefully designed
policy, DTE achieves an average 56.1% speedup over the
previously proposed Simultaneously and Redundantly
Threaded processor with Recovery (SRTR) [18]. Compared to
single-thread execution, DTE achieves both transient-fault

Efficient Transient-Fault Tolerance for Multithreaded
Processors Using Dual-Thread Execution

Yi Ma and Huiyang Zhou
School of Electrical Engineering and Computer Science

University of Central Florida
{yma, zhou}@cs.ucf.edu

C

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

tolerance and performance improvement (up to 91% and 15.5%
on average) at the same time.

The remainder of the paper is organized as follows. Section 2
discusses related work and reviews FTDCE as the background
for DTE. Implementation of DTE including the resource
sharing policies is addressed in Section 3. Section 4 presents
the simulation methodology and Section 5 discusses the
experimental results. Section 6 summaries the paper.

II. RELATED WORK AND BACKGROUND

A. Related Work

AR-SMT [13] is one of the first leader/follower schemes to
exploit SMT architectures for fault tolerance. The leading
stream (A-stream) executes the program, and conveys its
results to the redundant stream (R-stream) through a delay
buffer. The results from the A-stream provide perfect control
and data flow prediction to speedup the R-stream. Validation of
the predictions from the A-stream in the R-stream is used to
detect potential transient faults. Slipstream processors [15]
extend the AR-SMT concepts for higher performance
efficiency. In slipstream processors, the leading A-stream runs
a distilled version of the program by removing ineffectual
instructions while the R-stream serves as the main thread
re-executing the complete program. The A-stream results are
used as both predictions and redundancy checking for the
R-stream. To our knowledge, besides fault-tolerant dual-core
execution (FTDCE) [21], slipstream processors are the only
other scheme that can achieve both performance improvement
and fault tolerance simultaneously. Compared to slipstream
processing, FTDCE as well as the proposed DTE is more
complexity effective and achieves full redundancy coverage
along with higher performance improvement [21].

In DIVA [1], a separate in-order checker is used to validate
out-of-order execution of the main processor. Although DIVA
takes advantage of the leading main processor results to
simplify the checker design, delayed instruction commitment
incurs performance overheads. In SHREC [14], the checker
shares a pool of functional units with the main processor to
further reduce the resource overhead of the DIVA design.
However, it suffers from the same delayed instruction
commitment problem as in DIVA.

In SRT [12], a program is executed by two threads on SMT
architectures, a leading thread and a trailing thread similar to
the AR-SMT scheme. The leading thread executes instructions
and forwards the values of load instructions and branch
outcomes to the trailing thread through a load value queue
(LVQ) and a branch outcome queue (BOQ) when committing
the instructions. The retired store instructions are kept in a store
buffer (StB) until they have been verified by the trailing thread.
SRTR [18] extends SRT to support fault recovery. In SRTR, all
instructions of the leading thread are not allowed to commit
until they are verified by the trailing thread. The two threads

communicate values for redundancy checking through the
LVQ, BOQ, StB, and register value queue (RVQ). CRT [11]
provides transient-fault detection for CMPs, and CRTR [7]
extends CRT to provide fault recovery. All these schemes,
however, suffer from performance overheads as discussed in
Section 1. In [9], the execution results from the leading thread
is further utilized to reduce the resource requirements of the
trailing thread in SMT processors.

All the above-mentioned fault-tolerance schemes except
slipstream processors trade performance for system robustness.
In comparison, a recently proposed fault tolerant architecture
named fault-tolerant dual-core execution (FTDCE) [21]
achieves both transient-fault tolerance and significant
performance improvement simultaneously for CMPs. As DTE
is derived from FTDCE, next we review FTDCE as the
background for DTE.

B. Background: Fault-Tolerant Dual-Core Execution
(FTDCE)

FTDCE is built upon two superscalar processors (called the
front core and the back core) coupled with a hardware FIFO
queue (called the result queue), as show in Fig. 1. The front and
back processors have separate L1 caches while share a unified
L2 cache.

Superscalar Core

Superscalar Core

Result Queue

In-order
fetch

In-order
retire

Out-of-order Processing

Fig. 1, An overview of Fault-Tolerant Dual-Core Execution

How it works -- In FTDCE, the front processor executes
instructions in its normal way expect for long-latency cache
misses (i.e., L2 misses). When the front processor detects any
L2 miss load, it uses an invalid (INV) value to substitute the
data that are being fetched from memory, similar to runahead
execution [6], [10]. The INV flag is propagated through
register data dependency and memory data dependency to
invalidate the dependant instructions of the cache-missing
loads.

Instructions except stores and those raising exceptions are
retired by the front processor in its normal way. When a store
instruction retires, it does not update data cache. Instead, it
updates a structure called run-ahead cache to communicate the
store value to subsequent loads in the front processor.
Exception handling is disabled as the back processor maintains
the precise execution state. The retired instructions with their
execution results from the front processor are forwarded into
the result queue.

The back processor fetches instructions from the result
queue, re-executes all the instructions to ensure correctness,
and performs redundancy checking by comparing its execution
results with those carried from the front processor. When a
discrepancy is detected, it is simply treated as a branch

misprediction and is recovered by rewinding both processors to
the currently committed state, i.e., squashing all the instructions
in the back processor, the results queue, and the front processor,
invalidating the run-ahead cache, and copying the back
processor’s current architectural states to the front processor.

Since only the instructions that are not invalidated by the
front processor have valid results to be checked against
transient faults, those invalidated instructions are not under
protection. To achieve full redundancy coverage, the back
processor fetches those invalidated instructions twice, one for
normal execution and the other for redundancy check, using a
simple renaming scheme as described in [21].

How it improves performance -- By invalidating
long-latency cache-missing loads, the front processor runs with
a virtually ideal L2. As a result, it runs very fast and far ahead
of the back processor. The cache misses in the front processor
then become prefetches for the back processor. In addition, the
front processor promptly resolves the branch mispredictions
that are independent on those invalidated instructions, which
helps the back processor reduce the time wasted on wrong
paths. Overall, as shown in [20], the collaboration between the
two processors forms a very large instruction window and
effectively hides memory access latencies. The execution
paradigm of FTDCE is similar to Flea-Flicker two-pass
pipelining [2]. The key difference is that the execution results
of the run-ahead pipeline are reused in the Flea-Flicker design
while FTDCE relies on re-execution to relieve the correctness
requirement of the front core. The re-execution eliminates the
complexity associated with centralized memory order
bookkeeping and enables redundancy check for fault tolerance.

How it achieves transient-fault tolerance – In FTDCE, every
instruction is redundantly executed and the results are checked
before committing to the ECC protected architectural states.
Any discrepancy due to soft errors will be transparently
repaired by rewinding both processors to the currently
committed state using the existing mispeculation-recovery
scheme.

III. IMPLEMENTATION OF DUAL-THREAD EXECUTION
DTE can be viewed as an SMT implementation of the

FTDCE concept with the two separate processor cores being
replaced by two threads, namely the front thread and the back
thread, on a single processor. In Section 3.1, we describe the
hardware changes required on a typical SMT processor to
support DTE. In Section 3.2, we deal with the inherent
resource-contention issue with SMT, and explore fetch policies
to judiciously allocate resources between the front thread and
the back thread.

A. DTE Architectures
To support DTE, there are four hardware changes that we

need to make on a typical SMT processor, as highlighted in Fig.
2.

First, we need to add a run-ahead cache and a result queue.
The run-ahead cache is only accessed by the front thread. All
the committed stores in the front thread write the data to
run-ahead cache instead of D-cache, the same way as in
FTDCE. When a block is replaced from the run-ahead cache, it
is simply dropped without being written to L1 D-cache. The
front thread retires instructions with the execution results to the
result queue.

Second, we need to include INV bits in the register file (RF)
and the load-store queue (LSQ) for instruction invalidation.
The front thread executes instructions in the same way as the
front processor in FTDCE, i.e., a long-latency cache-missing
load is invalidated by setting the INV flag of the destination
register(s). Dependent instructions of those invalidated
long-latency loads are invalidated through INV propagation,
except branches and stores. If a branch instruction uses an INV
register, its prediction will be used as the resolved branch target.
A store instruction becomes a nop if its address is invalid. If the
value of a store instruction is invalid, the corresponding LSQ
entry’s INV bit is set. The store-load forwarding will then
propagate the INV bit to the subsequent load(s) accessing the
same address. When a store with an invalid value retires, it sets
the INV bit of the byte(s) in the run-ahead cache.

I-Cache Fetch

D
ispatch
Issue

R
eg R

ead
E

xecute
W

rite B
ack

R
etire

L1 D-Cache Run-ahead
Cache

Physical
Register file

IN
V LSQ

IN
V

tailhead

next to fetch

Result Queue

Back Thread

Front Thread

Fig. 2, DTE architecture

Third, we need to change the fetching and renaming
mechanism of the back thread. The back thread fetches
instructions from the result queue rather than the instruction
cache. An invalidated instruction is also duplicated when it
enters the instruction fetch buffer. The duplicated instructions
will access an additional rename map table as described in [21]
so as not to interfere with normal execution. Upon completion,
all instructions have to be checked before being retired from the
back thread by comparing the results with either the execution
results carried from the front thread or the redundant results
computed at the back thread.

Fourth, we need to include a mispeculation/fault recovery
mechanism for the back thread. When the back thread detects a
branch misprediction or a redundancy checking failure, all the
instructions in the front thread, the back thread, and the result
queue are squashed, the run-ahead cache is invalidated, and the
architectural register file of the back thread is copied to the
front thread.

Similar to FTDCE, DTE achieves fault tolerance through
redundant execution. The normal execution results in the back
thread are used to compare with the redundant results, which
are either carried from the front thread or produced by the back
thread itself, to detect transient faults during instruction
execution. Here, we assume that the architectural state of the
processor, including the PC, the architectural register file, as
well as the memory hierarchy are protected with information
redundancy techniques such as ECC. Then, when a discrepancy
is detected, both threads are rewound to the current
architectural state using the existing mispeculation recovery
mechanism.

Besides transient-fault tolerance, DTE also has the potential
to achieve performance enhancement as the two threads form a
large instruction window to hide memory access latencies, the
same as FTDCE.

B. Fetch Policies for DTE
In DTE, both the front thread and the back thread share a

single out-of-order (OOO) execution core and the cache
hierarchy. Compared to FTDCE, such close integration offers
more efficient inter-thread communication (i.e., lower cost of
mispeculation recovery at the back thread) while incurring the
potential resource-contention problem. Therefore, efficient
resource sharing is the key to overall performance. Next, we
examine various resource-sharing policies and discuss their
pros and cons for DTE.

ROUND-ROBIN (RR) fetch policy – This scheduling policy
is commonly used because of its fairness in allocating resources
to individual threads. As discussed in [17], the basic RR policy
can be extended to overcome the fetch-block fragmentation and
thread shortage problem. In other words, in each cycle, the
selected thread is allowed to use up all the fetch bandwidth. If it
does not have enough instructions, the remaining bandwidth
can be used by the other thread. This fetch bandwidth sharing
mechanism is used in all the scheduling policies presented in
this paper.

The RR policy is relatively easy to implement but fails to
consider the resource requirement of each thread. An L2-cache
miss in one thread, for example, can stall the entire pipeline by
reserving most/all of the available resources including the issue
queue, LSQ, the re-order buffer (ROB), and free physical
registers. The other thread is thereby blocked although there
may exist abundant instruction-level parallelism (ILP).

ICOUNT fetch policy – In order to improve resource
utilization, this scheduling policy gives higher priority to the
thread with fewer instructions in the decode, rename, and issue
stages [17]. ICOUNT shows good results for high ILP threads
while still suffers from the resource over-allocation problem
due to L2-cache misses. Further improvements upon the
ICOUNT policy, such as STALL [16], FLUSH [16], and
FLUSH++ [5], are proposed to address this problem by either
stalling or flushing (i.e., de-allocating resource) the offending
thread (i.e., the thread having the L2-cache miss). Those
approaches including ICOUNT, however, do not fit well with

DTE since only the back thread has L2-cache misses. As the
front thread already runs much faster with the virtually ideal L2
cache, granting more resource to the front thread simply
reduces the resource available to the slower back thread. As the
front thread will be stalled when the result queue is full,
slowing down the back thread usually undermines the overall
performance.

SLACK fetch policy – This policy is used to improve the
performance of SRT [12] and SRTR [18]. It aims to maintain a
target slack (i.e., a fixed number of instructions), between the
leading thread and the trailing thread. The fetch unit always
starts fetching from the leading thread until the target slack is
reached. Then, the ICOUNT policy is used to direct the fetch
unit. SLACK works well with SRT and SRTR since the
performance bottleneck in these schemes lies in the leading
thread (i.e., the main thread). In contrast, the trailing thread (i.e.,
the back thread) in DTE is the main thread and usually runs
slower. Therefore, SLACK is less effective for DTE as it tends
to give higher priority to the front thread.

Back-First (BF) fetch policy – Since the back thread is often
the performance bottleneck in DTE, this scheduling policy
always gives higher priority to the back thread. Doing so,
however, presents a potential problem that the front thread
could be starved for resources and fails to run sufficiently far
ahead to warm the caches and fix branch mispredictions for the
back thread.

Queue-Occupancy (QO) fetch policy – This scheduling
policy solves the problem with the BF policy and it is based on
the observation that the occupancy of the result queue indicates
the difference in execution speeds between the two threads. A
full result queue suggests that the front thread runs too fast
while an empty queue shows that the back thread is the one
using up too much resource. Therefore, in this scheduling
policy, we try to keep the occupancy around 50% (i.e., the
number of instructions in the result queue is half of the queue
size) using a simple threshold mechanism. If the result queue
occupancy is lower than 50%, the front thread gets higher
priority. Otherwise, the back thread is the one to be fetched
first.

In order to avoid the scenario where one thread monopolies
all the resources, a static threshold is also introduced in the
abovementioned scheduling polices upon the maximum
resources, such as ROB and issue queue entries, that can be
allocated to either thread. In this paper, the maximum is set as
120 for a 128-entry instruction window processor.

IV. SIMULATION METHODOLOGY
Our simulation environment is developed from the

SimpleScalar [4] toolset while our execution-driven timing
simulator is completely rebuilt to model MIPS R10000
architecture with SMT support. The cache modules in our
simulator model both data and tag stores. Wrong-path events
are also faithfully simulated.

The processor configuration is listed in Table I. For DTE, the
default result queue size is 512 entries and we assume 1-cycle
delay of the result queue. The run-ahead cache is 4kB, 4-way
associative with a block size of 8 bytes. A latency of 8 cycles is
assumed for copying the architectural register values from the
back thread to the front thread. The Queue-Occupancy (QO)
policy is the default fetch policy for DTE and we examine
impact of fetch policies in Section 5.2.

The same set of SPEC2000 benchmarks and the simulation
points are used as in [20].

TABLE I. Configuration of the processor

Pipeline 3-cycle fetch stage, 3-cycle dispatch
(decode and dispatch) stage, 1-cycle issue
stage, 1-cycle register access stage, 1-cycle
retire stage. Min. branch misprediction
penalty = 9 cycles

Instruction
Cache

Size=32 kB; Assoc.=2-way; Repl.=LRU;
Line size=16 instructions; Miss penalty=10
cycles.

Data Cache Size=32 kB; Assoc.=2-way; Repl.=LRU;
Line size = 64 bytes; Miss penalty=10
cycles.

Unified L2
Cache

Size=1024 kB; Assoc.=8-way; Repl.=LRU;
Line size=128 bytes; Miss penalty=300
cycles.

Br. Predictor 64k-entry G-share; 32k-entry BTB
Superscalar

Core
Reorder buffer: 128 entries;
Dispatch/issue/retire bandwidth: 8-way
superscalar; 8 fully-symmetric function
units; Data cache ports: 8. Issue queue: 128
entries. LSQ: 128 entries. Rename map table
checkpoints: 32

Execution
Latencies

Address generation: 1 cycle; Memory
access: 2 cycles (hit in data cache); Integer
ALU ops = 1 cycle; Complex ops = MIPS
R10000 latencies

Memory
Disambiguation

Perfect memory disambiguation

HW prefetcher Stride-based stream buffer prefetch

V. EXPERIMENTAL RESULTS

A. Performance Impact of DTE
As discussed in Section 3, DTE has the potential to achieve

both transient-fault tolerance and performance enhancement at
the same time. In this experiment, we examine the performance
impact of DTE as shown in Fig. 3. For comparison, we also
include the results of SRTR, a previously proposed
transient-fault tolerance scheme for SMT processors. In SRTR,
the leading thread is the main thread and the trailing thread is
the checker thread. The SLACK policy is used in SRTR with
the target slack set as 64 since it achieves the best performance
among the slacks of 32, 64 and 80. The execution time reported
in Fig. 3 is normalized to single-thread execution (i.e., the
single thread running on a SMT processor without redundancy
checking).

From Fig. 3, it can be seen that DTE achieves significant
performance improvement over single-thread execution for the
benchmarks mcf, art, equake, and swim. These benchmarks are
memory-intensive workloads featuring a large number of
L2-cache misses. Effective prefetching of the front thread in
DTE reduces the number of cache misses and enables more
computation overlapping in the back thread. DTE achieves
similar performance to single-thread execution for parser, twolf,
vpr, and ammp, suggesting that the benefits from the front
thread prefetching are offset by additional redundancy
checking in the back thread for these benchmarks. For
computation-intensive benchmarks, gap and bzip2, DTE is less
effective as there are too few L2-cache misses being
invalidated to make a difference. On average, DTE achieves
transient-fault tolerance along with an average of 15.5%
speedup over single-thread execution. Compared to SRTR,
DTE outperforms it on every benchmark, with speedups up to
144% (swim) and an average of 56.1%. The reason is that DTE
eliminates the problem of delayed instruction commitment
(since the front thread does not wait for redundancy checking)
and builds a much larger instruction window to hide memory
access latencies.

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

bz
ip

2

ga
p

gc
c

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p ar
t

eq
ua

ke

sw
im

av
er

ag
e

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e SRTR DTE

Fig. 3, Normalized execution time relative to single-thread

execution.

B. Exploring Fetch Policies
In this experiment, we examine the impact of different fetch

policies for DTE addressed in Section 3.2 and the results shown
in Fig. 4 are the execution time normalized to single-thread
execution.

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%
220%
240%

bz
ip

2

ga
p

gc
c

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ar
t

eq
ua

ke

sw
im

av
er

ag
e

no
rm

al
iz

ed
 e

xe
cu

ti
on

 ti
m

e

ROUND-ROBIN ICOUNT
SLACK Back-First
Queue-Ocuppancy

Fig. 4, Performance impacts of fetch policies for DTE.

Among various fetch policies used for DTE,
ROUND-ROBIN works reasonably well and achieves an
average of 4.7% speedup over single-thread execution.
ICOUNT favors the front thread since all its L2 cache misses
are invalidated. As discussed in Section 3.2, ICOUNT does not
fit well with DTE and it results in a 28.4% performance
overhead on average. SLACK has the similar problem to the
ICOUNT policy. Both ICOUNT and SLACK incur pathologic
behavior for the benchmarks ammp and art as the front thread
consumes too much resource. Such pathologic behavior can be
easily avoided by reducing the maximum amount of resource
that can be allocated for the front thread.

By prioritizing the back thread, the Back-First (BF) policy
solves the problem with ICOUNT and SLACK and achieves an
average of 8.6% speedup over single-thread execution. For the
benchmarks equake and swim, however, BF performs much
worse than all the other fetch policies. The reason lies in the
slow progress of the front thread as most resources are
occupied by the back thread. Therefore, the front thread fails to
run sufficiently ahead to warm up the caches for the back thread.
The Queue-Occupancy (QO) fetch policy effectively
overcomes these problems and it achieves the highest
performance among all the fetch policies studied in this
experiment.

C. Impact of Pipeline Bandwidth
In this experiment, we vary the processor pipeline bandwidth

to study how well DTE works with different resource
limitations. Fig. 5 shows the average IPC (Harmonic mean) of
all 11 benchmarks for 4-way, 6-way, and 8-way superscalar
processors with SMT. In both DTE and SRTR, the IPCs are
calculated based on the number of instructions retired by the
main thread, i.e., the redundant instructions are not included.
QO is used for DTE and SLACK is used for SRTR in this
experiment.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

4 6 8
Pipeline Bandwidth

A
ve

ra
ge

 IP
C

baseline SRTR DTE

Fig. 5, Performance impact of pipeline bandwidths.

As shown in Fig. 5, DTE achieves 7.1%, 15.3%, and 15.5%
speedup over single-thread execution on average for pipeline
bandwidth as 4, 6, and 8, respectively. In comparison, SRTR
incurs 28%, 27.2%, and 26% performance overhead in order to
achieve transient-fault tolerance. DTE utilizes the increased
pipeline bandwidth more effectively than SRTR and single
thread. The reason is that the memory wall problem limits
resource utilization in SRTR and single-thread execution while
the large instruction window formed with DTE effectively

hides memory access latencies. Furthermore, the higher
pipeline bandwidth, the less resource contention exists between
the front thread and the back thread in DTE.

Another observation from Fig. 5 is that redundant execution
in DTE does not introduce too much pressure on pipeline
resources. DTE running on a 6-way superscalar achieves
similar performance to DTE running on an 8-way superscalar
processor, suggesting that resource shortage does not present a
problem with DTE when pipeline bandwidth is beyond 6.

D. Energy Efficiency of DTE
To evaluate energy efficiency of DTE, we imported

WATTCH [3] and Hotleakage [19] into our simulator to
examine both dynamic and static energy consumption. In this
experiment, we use the 70nm technology with a clock
frequency of 5.6GHz and assume linear clock gating [3]. Fig. 6
shows the normalized energy consumption relative to
single-thread execution for both DTE and SRTR. For DTE
results, we also incorporated the power consumption of the
result queue and the run-ahead cache. Compared to SRTR,
DTE consumes more dynamic energy since the back thread in
DTE needs to duplicate the instructions that are invalidated by
the front thread. The advantage of DTE lies in its highly
reduced execution time, which results in much less
static/leakage energy consumption even compared to
single-thread execution. With current trend of technology
scaling, static/leakage energy will become more dominant in
overall energy consumption, which makes DTE a better fit for
future technologies.

Normalized Energy

0

0.5

1

1.5

2

2.5

ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE ba
se

SR
TR

D
TE

bzip2 gap gcc mcf parser twolf vpr ammp art equake swim average

Dynamic Leakage

Fig. 6, Normalized energy consumption relative to single-thread
execution.

In the next experiment, we use energy-delay product (EDP)
 [8] to evaluate energy efficiency of DTE and SRTR. Fig. 7
shows the normalized EDP relative to single-thread execution.
Compared to SRTR, DTE achieves similar energy efficiency
for the benchmarks, gcc, parser, twolf, vpr, and ammp. For
remaining benchmarks, DTE has much better energy efficiency
than SRTR with only one exception, gap, for which DTE
achieves little performance improvement (2.8%) over SRTR
while incurring an energy overhead of 10%. On average, DTE
reports much higher energy efficiency than SRTR (1.63 vs.
2.29).

0

0.5

1

1.5

2

2.5

3

3.5

bz
ip

2

ga
p

gc
c

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p ar
t

eq
ua

ke

sw
im

av
er

ag
e

no
rm

al
iz

ed
 E

D
P

SRTR DTE

Fig. 7, Normalized Energy-Delay Product relative to single-thread

execution.

VI. CONCLUSION
In this paper, we propose dual-thread execution (DTE) to

achieve efficient transient-fault tolerance for SMT processors.
DTE extends the recently proposed FTDCE, a transient-fault
tolerance scheme for CMPs, to SMT architectures. In DTE, the
front thread and the back thread execute the instruction stream
collaboratively, not only providing redundancy check to
protect against transient faults but also forming a large
instruction window to hide memory access latencies. As DTE
builds upon SMT processors, we propose and evaluate various
fetch policies to address the critical resource contentions
between the two threads. With the Queue-Occupancy fetch
policy, our experimental results show that DTE achieves
full-coverage transient-fault tolerance along with an average of
15.5% performance improvement over single-thread execution.
Compared to a previously proposed transient-fault tolerance
scheme for SMT processors, SRTR, DTE achieves both
significantly higher performance and better energy efficiency.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their

valuable suggestions to improve the paper.

REFERENCES
[1] T. Austin, “DIVA: A reliable substrate for deep submicron

microarchitecture design”, Proc. of the 32nd Int. Symp. on Microarch.
(MICRO-32), 1999.

[2] R. Barnes, E. Nystrom, J. Sias, S. Patel, N. Navarro, and W. Hwu, “Beating
in-order stalls with flea-flicker two pass pipelining”, Proc. of the 36th Int.
Symp. on Microarch. (MICRO-36), 2003.

[3] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimization”, Proc. of the 27thInt.
Symp. on Comp. Arch. (ISCA-27), 2000.

[4] D. Burger and T. Austin, “The SimpleScalar tool set, v2.0”, Computer
Architecture News, vol. 25, June 1997.

[5] F. Cazorla, E. Fernandez, A. Ramirez and M. Valero, “Improving memory
latency aware fetch policies for SMT processors”, Proc. of the 5th Int. Symp.
on High Perf. Computing (ISHPC-5), 2003.

[6] J. Dundas and T. Mudge, “Improving data cache performance by
pre-executing instructions under a cache miss”, Proc. of the 1997 Int. Conf.
on Supercomputing (ICS-97), 1997.

[7] M. Gomma, C. Scarbrough, T. Vijaykumar, and I. Pomeranz,
“Transient-fault recovery for chip multiprocessors”, Proc. of the 30th Int.
Symp. on Comp. Arch. (ISCA-30), 2003.

[8] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low power digital design”,
Int. Symp. on Low Power Electronics, 1994.

[9] S. Kumar and A. Aggarwal, “Reducing resource redundancy for concurrent
error detection techniques in high performance microprocessors”, Proc. of
the 12th Int. Symp. on High Perf. Comp. Arch. (HPCA-12), 2006.

[10] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution: an
alternative to very large instruction windows for out-of-order processors”,
Proc. of the 9th Int. Symp. on High Perf. Comp. Arch. (HPCA-9), 2003

[11] S. Mukherjee, M. Kontz and S. Reinhardt, “Detailed design and evaluation
of redundant multithreading alternatives”, Proc. of the 29th Int. Symp. on
Comp. Arch.(ISCA-29), 2002.

[12] S. Reinhardt and S. Mukherjee, “Transient fault detection via simultaneous
multithreading”, Proc. of the 27th Int. Symp. on Comp. Arch. (ISCA-27),
2000.

[13] E. Rotenberg, “AR-SMT: a microarchitectural approach to fault tolerance
in microprocessors”, Proc. of the 29th Int. Symp. on Fault-Toler.
Computing (FTCS-29), 1999.

[14] J. Smolens, J. Kim, J. Hoe and B. Falsafi, “Efficient Resource Sharing in
Concurrent Error Detecting Supersalar Microarchitectures”, Proc. of the
37th Int. Symp. on Microarch. (MICRO-37), 2004.

[15] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream processors:
improving both performance and fault tolerance”, Proc. of the 9th Int. Conf.
on Arch. Support for Prog. Lang. and Operating Sys. (ASPLOS-9), 2000.

[16] D. Tullsen and J. Brown, “Handling long-latency loads in a simultaneous
multithreaded processor”, Proc. of the 34th Int. Symp. on Microarch.
(MICRO-34), 2001.

[17] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo and R. Stamm, “Exploiting
choice: Instruction fetch and issue on an implementable simultaneous
multithreading processor”, Proc. of the 23rd Int. Symp. on Comp. Arch.
(ISCA-23), 1996.

[18] T. Vijaykumar I. Pomeranz, and K. Cheng, “Transient-fault recovery using
simultaneous multithreading”, Proc. of the 29th Int. Symp. on Comp. Arch.
(ISCA-29), 2002.

[19] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“Hotleakage: a temperature-aware model of sub-threshold and gate leakage
for architects”, Tech. Reports CS-2003-05, U. Va. Dept. of CS, 2003.

[20] H. Zhou, “Dual-core execution: building a highly scalable single-thread
instruction window”, Proc. of the 2005 Int. Conf. on Para. Arch. And
Compiler Tech, (PACT’05), 2005.

[21] H. Zhou, “A case for fault-tolerance and performance enhancement using
Chip Multiprocessors”, IEEE Comp. Arch. Letters. September 2005.

