
 

 
Abstract—Reliability becomes a key issue in computer system 

design as microprocessors are increasingly susceptible to 
transient faults. Many previously proposed schemes exploit 
simultaneous multithreaded (SMT) architectures to achieve 
transient-fault tolerance by running a program concurrently on 
two threads, a main thread and a redundant checker thread. Such 
schemes however often incur high performance overheads due to 
resource contention and redundancy checking.  

In this paper, we propose dual-thread execution (DTE) for 
SMT processors to efficiently achieve transient-fault tolerance. 
DTE is derived from the recently proposed fault-tolerant 
dual-core execution (FTDCE) paradigm, in which two processor 
cores on a single chip perform redundant execution to improve 
both reliability and performance. In this paper, we apply the same 
principles as in FTDCE to SMT architectures and explore fetch 
policies to address the critical resource-sharing issue in SMT 
architectures. Our experimental results show that DTE achieves 
an average of 56.1% speedup over the previously proposed 
simultaneously and redundantly threaded processor with 
recovery (SRTR). More impressively, even compared to 
single-thread execution, DTE achieves full-coverage 
transient-fault tolerance along with an average of 15.5% 
performance improvement. 
 

Index Terms—Fault tolerance, microprocessors, 
multi-threaded architectures, redundant systems. 

 

I. INTRODUCTION 
URRENT trend in semiconductor technology features 
faster transistors, higher integration density, and lower 

supply voltages. While this trend improves processor 
performance and reduces transistor-power consumption, it 
results in increased susceptibility to transient faults for modern 
microprocessors.  

To protect program execution against transient faults, one 
promising approach is redundant execution using 
leader/follower architectures  [1], [7], [11], [12], [13], [14], 
 [15], [18], [21], in which a program is redundantly executed by a 
leading thread and a trailing thread. The execution results from 
the two threads are compared to detect transient faults. If the 
execution results are committed only after redundancy 
checking, fault tolerance can also be achieved by rewinding 
both threads to the most recently committed execution state 
when an error is detected. The leading thread and the trailing 

thread may run on different processor cores in chip 
multiprocessors (CMPs)  [1], [7], [15] or share a single processor 
with simultaneous multithreading (SMT)  [12], [13], [18]. 

In most leader/follower schemes for fault tolerance, the 
leader is the main thread while the follower serves as a checker 
thread providing redundant execution. Although the leading 
thread results, such as load values and branch outcomes, can be 
exploited to speedup the trailing checker thread, the overall 
execution may still suffer from significant performance 
overheads. The main reasons include (a) delayed instruction 
commitment in the main thread as instructions such as stores 
can only commit after redundancy checking, which results in 
the increased pressure on critical resources like the load/store 
queue (LSQ); and (b) resource contention between the two 
threads, especially when they share a SMT processor. In this 
paper, we propose a new scheme, named dual-thread execution 
(DTE), to efficiently achieve transient-fault tolerance for SMT 
architectures. 

DTE is derived from the recently proposed fault-tolerant 
dual-core execution (FTDCE) paradigm  [21]. In FTDCE, a 
program is executed by two processor cores on a single chip, 
the front processor and the back processor. The front processor 
speculatively executes instructions by invalidating long-latency 
cache-missing loads and their dependent instructions. The back 
processor re-executes the instructions retired by the front 
processor to ensure correctness and provide redundancy 
checking. In this way, both significant performance 
enhancement and fault tolerance can be achieved 
simultaneously (a more detailed background on FTDCE is 
described in Section 2.2). In this paper, we extend the same 
principles of FTDCE to SMT architectures. In other words, in 
DTE, a program is executed redundantly by a front thread and a 
back thread on a SMT processor and the threads process 
instructions in a similar way to the front and back processors in 
FTDCE. 

As DTE is built upon SMT architectures, a key issue to 
address in DTE is resource contention between the two threads. 
In this paper, we propose and evaluate various resource sharing 
policies. Our experiments show that with a carefully designed 
policy, DTE achieves an average 56.1% speedup over the 
previously proposed Simultaneously and Redundantly 
Threaded processor with Recovery (SRTR)  [18]. Compared to 
single-thread execution, DTE achieves both transient-fault 
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tolerance and performance improvement (up to 91% and 15.5% 
on average) at the same time. 

The remainder of the paper is organized as follows. Section 2 
discusses related work and reviews FTDCE as the background 
for DTE. Implementation of DTE including the resource 
sharing policies is addressed in Section 3. Section 4 presents 
the simulation methodology and Section 5 discusses the 
experimental results. Section 6 summaries the paper.  

 

II. RELATED WORK AND BACKGROUND 

A. Related Work 

AR-SMT  [13] is one of the first leader/follower schemes to 
exploit SMT architectures for fault tolerance. The leading 
stream (A-stream) executes the program, and conveys its 
results to the redundant stream (R-stream) through a delay 
buffer. The results from the A-stream provide perfect control 
and data flow prediction to speedup the R-stream. Validation of 
the predictions from the A-stream in the R-stream is used to 
detect potential transient faults. Slipstream processors  [15] 
extend the AR-SMT concepts for higher performance 
efficiency. In slipstream processors, the leading A-stream runs 
a distilled version of the program by removing ineffectual 
instructions while the R-stream serves as the main thread 
re-executing the complete program. The A-stream results are 
used as both predictions and redundancy checking for the 
R-stream. To our knowledge, besides fault-tolerant dual-core 
execution (FTDCE)  [21], slipstream processors are the only 
other scheme that can achieve both performance improvement 
and fault tolerance simultaneously. Compared to slipstream 
processing, FTDCE as well as the proposed DTE is more 
complexity effective and achieves full redundancy coverage 
along with higher performance improvement  [21].  

In DIVA  [1], a separate in-order checker is used to validate 
out-of-order execution of the main processor. Although DIVA 
takes advantage of the leading main processor results to 
simplify the checker design, delayed instruction commitment 
incurs performance overheads. In SHREC  [14], the checker 
shares a pool of functional units with the main processor to 
further reduce the resource overhead of the DIVA design. 
However, it suffers from the same delayed instruction 
commitment problem as in DIVA.  

In SRT  [12], a program is executed by two threads on SMT 
architectures, a leading thread and a trailing thread similar to 
the AR-SMT scheme. The leading thread executes instructions 
and forwards the values of load instructions and branch 
outcomes to the trailing thread through a load value queue 
(LVQ) and a branch outcome queue (BOQ) when committing 
the instructions. The retired store instructions are kept in a store 
buffer (StB) until they have been verified by the trailing thread. 
SRTR  [18] extends SRT to support fault recovery. In SRTR, all 
instructions of the leading thread are not allowed to commit 
until they are verified by the trailing thread. The two threads 

communicate values for redundancy checking through the 
LVQ, BOQ, StB, and register value queue (RVQ). CRT  [11] 
provides transient-fault detection for CMPs, and CRTR  [7] 
extends CRT to provide fault recovery. All these schemes, 
however, suffer from performance overheads as discussed in 
Section 1. In  [9], the execution results from the leading thread 
is further utilized to reduce the resource requirements of the 
trailing thread in SMT processors. 

All the above-mentioned fault-tolerance schemes except 
slipstream processors trade performance for system robustness. 
In comparison, a recently proposed fault tolerant architecture 
named fault-tolerant dual-core execution (FTDCE)  [21] 
achieves both transient-fault tolerance and significant 
performance improvement simultaneously for CMPs. As DTE 
is derived from FTDCE, next we review FTDCE as the 
background for DTE. 

B. Background: Fault-Tolerant Dual-Core Execution 
(FTDCE) 

FTDCE is built upon two superscalar processors (called the 
front core and the back core) coupled with a hardware FIFO 
queue (called the result queue), as show in Fig. 1. The front and 
back processors have separate L1 caches while share a unified 
L2 cache. 
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Fig. 1,  An overview of Fault-Tolerant Dual-Core Execution 

How it works -- In FTDCE, the front processor executes 
instructions in its normal way expect for long-latency cache 
misses (i.e., L2 misses). When the front processor detects any 
L2 miss load, it uses an invalid (INV) value to substitute the 
data that are being fetched from memory, similar to runahead 
execution  [6], [10].  The INV flag is propagated through 
register data dependency and memory data dependency to 
invalidate the dependant instructions of the cache-missing 
loads.  

Instructions except stores and those raising exceptions are 
retired by the front processor in its normal way. When a store 
instruction retires, it does not update data cache. Instead, it 
updates a structure called run-ahead cache to communicate the 
store value to subsequent loads in the front processor. 
Exception handling is disabled as the back processor maintains 
the precise execution state. The retired instructions with their 
execution results from the front processor are forwarded into 
the result queue.  

The back processor fetches instructions from the result 
queue, re-executes all the instructions to ensure correctness, 
and performs redundancy checking by comparing its execution 
results with those carried from the front processor. When a 
discrepancy is detected, it is simply treated as a branch 



 

misprediction and is recovered by rewinding both processors to 
the currently committed state, i.e., squashing all the instructions 
in the back processor, the results queue, and the front processor, 
invalidating the run-ahead cache, and copying the back 
processor’s current architectural states to the front processor.  

Since only the instructions that are not invalidated by the 
front processor have valid results to be checked against 
transient faults, those invalidated instructions are not under 
protection. To achieve full redundancy coverage, the back 
processor fetches those invalidated instructions twice, one for 
normal execution and the other for redundancy check, using a 
simple renaming scheme as described in  [21]. 

How it improves performance -- By invalidating 
long-latency cache-missing loads, the front processor runs with 
a virtually ideal L2. As a result, it runs very fast and far ahead 
of the back processor. The cache misses in the front processor 
then become prefetches for the back processor. In addition, the 
front processor promptly resolves the branch mispredictions 
that are independent on those invalidated instructions, which 
helps the back processor reduce the time wasted on wrong 
paths. Overall, as shown in  [20], the collaboration between the 
two processors forms a very large instruction window and 
effectively hides memory access latencies. The execution 
paradigm of FTDCE is similar to Flea-Flicker two-pass 
pipelining  [2]. The key difference is that the execution results 
of the run-ahead pipeline are reused in the Flea-Flicker design 
while FTDCE relies on re-execution to relieve the correctness 
requirement of the front core. The re-execution eliminates the 
complexity associated with centralized memory order 
bookkeeping and enables redundancy check for fault tolerance.  

How it achieves transient-fault tolerance – In FTDCE, every 
instruction is redundantly executed and the results are checked 
before committing to the ECC protected architectural states. 
Any discrepancy due to soft errors will be transparently 
repaired by rewinding both processors to the currently 
committed state using the existing mispeculation-recovery 
scheme. 

 

III. IMPLEMENTATION OF DUAL-THREAD EXECUTION 
DTE can be viewed as an SMT implementation of the 

FTDCE concept with the two separate processor cores being 
replaced by two threads, namely the front thread and the back 
thread, on a single processor. In Section 3.1, we describe the 
hardware changes required on a typical SMT processor to 
support DTE. In Section 3.2, we deal with the inherent 
resource-contention issue with SMT, and explore fetch policies 
to judiciously allocate resources between the front thread and 
the back thread. 

A. DTE Architectures 
To support DTE, there are four hardware changes that we 

need to make on a typical SMT processor, as highlighted in Fig. 
2.  

First, we need to add a run-ahead cache and a result queue. 
The run-ahead cache is only accessed by the front thread. All 
the committed stores in the front thread write the data to 
run-ahead cache instead of D-cache, the same way as in 
FTDCE. When a block is replaced from the run-ahead cache, it 
is simply dropped without being written to L1 D-cache. The 
front thread retires instructions with the execution results to the 
result queue. 

Second, we need to include INV bits in the register file (RF) 
and the load-store queue (LSQ) for instruction invalidation. 
The front thread executes instructions in the same way as the 
front processor in FTDCE, i.e., a long-latency cache-missing 
load is invalidated by setting the INV flag of the destination 
register(s). Dependent instructions of those invalidated 
long-latency loads are invalidated through INV propagation, 
except branches and stores. If a branch instruction uses an INV 
register, its prediction will be used as the resolved branch target. 
A store instruction becomes a nop if its address is invalid. If the 
value of a store instruction is invalid, the corresponding LSQ 
entry’s INV bit is set. The store-load forwarding will then 
propagate the INV bit to the subsequent load(s) accessing the 
same address. When a store with an invalid value retires, it sets 
the INV bit of the byte(s) in the run-ahead cache.  
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Fig. 2,  DTE architecture  

Third, we need to change the fetching and renaming 
mechanism of the back thread. The back thread fetches 
instructions from the result queue rather than the instruction 
cache. An invalidated instruction is also duplicated when it 
enters the instruction fetch buffer. The duplicated instructions 
will access an additional rename map table as described in  [21] 
so as not to interfere with  normal execution. Upon completion, 
all instructions have to be checked before being retired from the 
back thread by comparing the results with either the execution 
results carried from the front thread or the redundant results 
computed at the back thread.  

Fourth, we need to include a mispeculation/fault recovery 
mechanism for the back thread. When the back thread detects a 
branch misprediction or a redundancy checking failure, all the 
instructions in the front thread, the back thread, and the result 
queue are squashed, the run-ahead cache is invalidated, and the 
architectural register file of the back thread is copied to the 
front thread. 



 

Similar to FTDCE, DTE achieves fault tolerance through 
redundant execution. The normal execution results in the back 
thread are used to compare with the redundant results, which 
are either carried from the front thread or produced by the back 
thread itself, to detect transient faults during instruction 
execution. Here, we assume that the architectural state of the 
processor, including the PC, the architectural register file, as 
well as the memory hierarchy are protected with information 
redundancy techniques such as ECC. Then, when a discrepancy 
is detected, both threads are rewound to the current 
architectural state using the existing mispeculation recovery 
mechanism.  

Besides transient-fault tolerance, DTE also has the potential 
to achieve performance enhancement as the two threads form a 
large instruction window to hide memory access latencies, the 
same as FTDCE. 

B. Fetch Policies for DTE 
In DTE, both the front thread and the back thread share a 

single out-of-order (OOO) execution core and the cache 
hierarchy. Compared to FTDCE, such close integration offers 
more efficient inter-thread communication (i.e., lower cost of 
mispeculation recovery at the back thread) while incurring the 
potential resource-contention problem. Therefore, efficient 
resource sharing is the key to overall performance. Next, we 
examine various resource-sharing policies and discuss their 
pros and cons for DTE.  

ROUND-ROBIN (RR) fetch policy – This scheduling policy 
is commonly used because of its fairness in allocating resources 
to individual threads. As discussed in  [17], the basic RR policy 
can be extended to overcome the fetch-block fragmentation and 
thread shortage problem. In other words, in each cycle, the 
selected thread is allowed to use up all the fetch bandwidth. If it 
does not have enough instructions, the remaining bandwidth 
can be used by the other thread. This fetch bandwidth sharing 
mechanism is used in all the scheduling policies presented in 
this paper. 

The RR policy is relatively easy to implement but fails to 
consider the resource requirement of each thread. An L2-cache 
miss in one thread, for example, can stall the entire pipeline by 
reserving most/all of the available resources including the issue 
queue, LSQ, the re-order buffer (ROB), and free physical 
registers. The other thread is thereby blocked although there 
may exist abundant instruction-level parallelism (ILP).  

ICOUNT fetch policy – In order to improve resource 
utilization, this scheduling policy gives higher priority to the 
thread with fewer instructions in the decode, rename, and issue 
stages  [17]. ICOUNT shows good results for high ILP threads 
while still suffers from the resource over-allocation problem 
due to L2-cache misses. Further improvements upon the 
ICOUNT policy, such as STALL  [16], FLUSH  [16], and 
FLUSH++  [5], are proposed to address this problem by either 
stalling or flushing (i.e., de-allocating resource) the offending 
thread (i.e., the thread having the L2-cache miss). Those 
approaches including ICOUNT, however, do not fit well with 

DTE since only the back thread has L2-cache misses. As the 
front thread already runs much faster with the virtually ideal L2 
cache, granting more resource to the front thread simply 
reduces the resource available to the slower back thread. As the 
front thread will be stalled when the result queue is full, 
slowing down the back thread usually undermines the overall 
performance.  

SLACK fetch policy – This policy is used to improve the 
performance of SRT  [12] and SRTR  [18]. It aims to maintain a 
target slack (i.e., a fixed number of instructions), between the 
leading thread and the trailing thread. The fetch unit always 
starts fetching from the leading thread until the target slack is 
reached. Then, the ICOUNT policy is used to direct the fetch 
unit. SLACK works well with SRT and SRTR since the 
performance bottleneck in these schemes lies in the leading 
thread (i.e., the main thread). In contrast, the trailing thread (i.e., 
the back thread) in DTE is the main thread and usually runs 
slower. Therefore, SLACK is less effective for DTE as it tends 
to give higher priority to the front thread. 

Back-First (BF) fetch policy – Since the back thread is often 
the performance bottleneck in DTE, this scheduling policy 
always gives higher priority to the back thread. Doing so, 
however, presents a potential problem that the front thread 
could be starved for resources and fails to run sufficiently far 
ahead to warm the caches and fix branch mispredictions for the 
back thread. 

Queue-Occupancy (QO) fetch policy – This scheduling 
policy solves the problem with the BF policy and it is based on 
the observation that the occupancy of the result queue indicates 
the difference in execution speeds between the two threads. A 
full result queue suggests that the front thread runs too fast 
while an empty queue shows that the back thread is the one 
using up too much resource. Therefore, in this scheduling 
policy, we try to keep the occupancy around 50% (i.e., the 
number of instructions in the result queue is half of the queue 
size) using a simple threshold mechanism. If the result queue 
occupancy is lower than 50%, the front thread gets higher 
priority. Otherwise, the back thread is the one to be fetched 
first. 

In order to avoid the scenario where one thread monopolies 
all the resources, a static threshold is also introduced in the 
abovementioned scheduling polices upon the maximum 
resources, such as ROB and issue queue entries, that can be 
allocated to either thread. In this paper, the maximum is set as 
120 for a 128-entry instruction window processor. 

 

IV. SIMULATION METHODOLOGY 
Our simulation environment is developed from the 

SimpleScalar  [4] toolset while our execution-driven timing 
simulator is completely rebuilt to model MIPS R10000 
architecture with SMT support. The cache modules in our 
simulator model both data and tag stores. Wrong-path events 
are also faithfully simulated.  



 

The processor configuration is listed in Table I. For DTE, the 
default result queue size is 512 entries and we assume 1-cycle 
delay of the result queue. The run-ahead cache is 4kB, 4-way 
associative with a block size of 8 bytes. A latency of 8 cycles is 
assumed for copying the architectural register values from the 
back thread to the front thread. The Queue-Occupancy (QO) 
policy is the default fetch policy for DTE and we examine 
impact of fetch policies in Section 5.2.  

The same set of SPEC2000 benchmarks and the simulation 
points are used as in  [20]. 

 
TABLE I. Configuration of the processor 

Pipeline 3-cycle fetch stage, 3-cycle dispatch 
(decode and dispatch) stage, 1-cycle issue 
stage, 1-cycle register access stage, 1-cycle 
retire stage. Min. branch misprediction 
penalty = 9 cycles 

Instruction 
Cache 

Size=32 kB; Assoc.=2-way; Repl.=LRU; 
Line size=16 instructions; Miss penalty=10 
cycles. 

Data Cache Size=32 kB; Assoc.=2-way; Repl.=LRU; 
Line size = 64 bytes; Miss penalty=10 
cycles. 

Unified L2 
Cache 

Size=1024 kB; Assoc.=8-way; Repl.=LRU; 
Line size=128 bytes; Miss penalty=300 
cycles. 

Br. Predictor 64k-entry G-share; 32k-entry BTB 
Superscalar 

Core 
Reorder buffer: 128 entries; 
Dispatch/issue/retire bandwidth: 8-way 
superscalar; 8 fully-symmetric function 
units; Data cache ports: 8. Issue queue: 128 
entries. LSQ: 128 entries. Rename map table 
checkpoints: 32 

Execution 
Latencies 

Address generation: 1 cycle; Memory 
access: 2 cycles (hit in data cache); Integer 
ALU ops = 1 cycle; Complex ops = MIPS 
R10000 latencies 

Memory 
Disambiguation 

Perfect memory disambiguation 

HW prefetcher Stride-based stream buffer prefetch 
 

V. EXPERIMENTAL RESULTS 

A. Performance Impact of DTE 
As discussed in Section 3, DTE has the potential to achieve 

both transient-fault tolerance and performance enhancement at 
the same time. In this experiment, we examine the performance 
impact of DTE as shown in Fig. 3. For comparison, we also 
include the results of SRTR, a previously proposed 
transient-fault tolerance scheme for SMT processors. In SRTR, 
the leading thread is the main thread and the trailing thread is 
the checker thread. The SLACK policy is used in SRTR with 
the target slack set as 64 since it achieves the best performance 
among the slacks of 32, 64 and 80. The execution time reported 
in Fig. 3 is normalized to single-thread execution (i.e., the 
single thread running on a SMT processor without redundancy 
checking). 

From Fig. 3, it can be seen that DTE achieves significant 
performance improvement over single-thread execution for the 
benchmarks mcf, art, equake, and swim. These benchmarks are 
memory-intensive workloads featuring a large number of 
L2-cache misses. Effective prefetching of the front thread in 
DTE reduces the number of cache misses and enables more 
computation overlapping in the back thread. DTE achieves 
similar performance to single-thread execution for parser, twolf, 
vpr, and ammp, suggesting that the benefits from the front 
thread prefetching are offset by additional redundancy 
checking in the back thread for these benchmarks. For 
computation-intensive benchmarks, gap and bzip2, DTE is less 
effective as there are too few L2-cache misses being 
invalidated to make a difference. On average, DTE achieves 
transient-fault tolerance along with an average of 15.5% 
speedup over single-thread execution. Compared to SRTR, 
DTE outperforms it on every benchmark, with speedups up to 
144% (swim) and an average of 56.1%. The reason is that DTE 
eliminates the problem of delayed instruction commitment 
(since the front thread does not wait for redundancy checking) 
and builds a much larger instruction window to hide memory 
access latencies. 
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Fig. 3,  Normalized execution time relative to single-thread 

execution. 

B. Exploring Fetch Policies 
In this experiment, we examine the impact of different fetch 

policies for DTE addressed in Section 3.2 and the results shown 
in Fig. 4 are the execution time normalized to single-thread 
execution.  
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Fig. 4,  Performance impacts of fetch policies for DTE. 



 

Among various fetch policies used for DTE, 
ROUND-ROBIN works reasonably well and achieves an 
average of 4.7% speedup over single-thread execution. 
ICOUNT favors the front thread since all its L2 cache misses 
are invalidated. As discussed in Section 3.2, ICOUNT does not 
fit well with DTE and it results in a 28.4% performance 
overhead on average. SLACK has the similar problem to the 
ICOUNT policy. Both ICOUNT and SLACK incur pathologic 
behavior for the benchmarks ammp and art as the front thread 
consumes too much resource. Such pathologic behavior can be 
easily avoided by reducing the maximum amount of resource 
that can be allocated for the front thread.  

By prioritizing the back thread, the Back-First (BF) policy 
solves the problem with ICOUNT and SLACK and achieves an 
average of 8.6% speedup over single-thread execution. For the 
benchmarks equake and swim, however, BF performs much 
worse than all the other fetch policies. The reason lies in the 
slow progress of the front thread as most resources are 
occupied by the back thread. Therefore, the front thread fails to 
run sufficiently ahead to warm up the caches for the back thread. 
The Queue-Occupancy (QO) fetch policy effectively 
overcomes these problems and it achieves the highest 
performance among all the fetch policies studied in this 
experiment. 

C. Impact of Pipeline Bandwidth 
In this experiment, we vary the processor pipeline bandwidth 

to study how well DTE works with different resource 
limitations. Fig. 5 shows the average IPC (Harmonic mean) of 
all 11 benchmarks for 4-way, 6-way, and 8-way superscalar 
processors with SMT. In both DTE and SRTR, the IPCs are 
calculated based on the number of instructions retired by the 
main thread, i.e., the redundant instructions are not included. 
QO is used for DTE and SLACK is used for SRTR in this 
experiment.  
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Fig. 5,  Performance impact of pipeline bandwidths. 

As shown in Fig. 5, DTE achieves 7.1%, 15.3%, and 15.5% 
speedup over single-thread execution on average for pipeline 
bandwidth as 4, 6, and 8, respectively. In comparison, SRTR 
incurs 28%, 27.2%, and 26% performance overhead in order to 
achieve transient-fault tolerance. DTE utilizes the increased 
pipeline bandwidth more effectively than SRTR and single 
thread. The reason is that the memory wall problem limits 
resource utilization in SRTR and single-thread execution while 
the large instruction window formed with DTE effectively 

hides memory access latencies. Furthermore, the higher 
pipeline bandwidth, the less resource contention exists between 
the front thread and the back thread in DTE. 

Another observation from Fig. 5 is that redundant execution 
in DTE does not introduce too much pressure on pipeline 
resources. DTE running on a 6-way superscalar achieves 
similar performance to DTE running on an 8-way superscalar 
processor, suggesting that resource shortage does not present a 
problem with DTE when pipeline bandwidth is beyond 6. 

D. Energy Efficiency of DTE 
To evaluate energy efficiency of DTE, we imported 

WATTCH  [3] and Hotleakage  [19] into our simulator to 
examine both dynamic and static energy consumption. In this 
experiment, we use the 70nm technology with a clock 
frequency of 5.6GHz and assume linear clock gating  [3]. Fig. 6 
shows the normalized energy consumption relative to 
single-thread execution for both DTE and SRTR. For DTE 
results, we also incorporated the power consumption of the 
result queue and the run-ahead cache. Compared to SRTR, 
DTE consumes more dynamic energy since the back thread in 
DTE needs to duplicate the instructions that are invalidated by 
the front thread. The advantage of DTE lies in its highly 
reduced execution time, which results in much less 
static/leakage energy consumption even compared to 
single-thread execution. With current trend of technology 
scaling, static/leakage energy will become more dominant in 
overall energy consumption, which makes DTE a better fit for 
future technologies. 
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Fig. 6,  Normalized energy consumption relative to single-thread 
execution. 

In the next experiment, we use energy-delay product (EDP) 
 [8] to evaluate energy efficiency of DTE and SRTR. Fig. 7 
shows the normalized EDP relative to single-thread execution. 
Compared to SRTR, DTE achieves similar energy efficiency 
for the benchmarks, gcc, parser, twolf, vpr, and ammp. For 
remaining benchmarks, DTE has much better energy efficiency 
than SRTR with only one exception, gap, for which DTE 
achieves little performance improvement (2.8%) over SRTR 
while incurring an energy overhead of 10%. On average, DTE 
reports much higher energy efficiency than SRTR (1.63 vs. 
2.29). 
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Fig. 7,  Normalized Energy-Delay Product relative to single-thread 

execution. 

VI. CONCLUSION 
In this paper, we propose dual-thread execution (DTE) to 

achieve efficient transient-fault tolerance for SMT processors. 
DTE extends the recently proposed FTDCE, a transient-fault 
tolerance scheme for CMPs, to SMT architectures. In DTE, the 
front thread and the back thread execute the instruction stream 
collaboratively, not only providing redundancy check to 
protect against transient faults but also forming a large 
instruction window to hide memory access latencies. As DTE 
builds upon SMT processors, we propose and evaluate various 
fetch policies to address the critical resource contentions 
between the two threads. With the Queue-Occupancy fetch 
policy, our experimental results show that DTE achieves 
full-coverage transient-fault tolerance along with an average of 
15.5% performance improvement over single-thread execution. 
Compared to a previously proposed transient-fault tolerance 
scheme for SMT processors, SRTR, DTE achieves both 
significantly higher performance and better energy efficiency.  
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