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Abstract 

This paper proposes a novel approach to implement 
software object in hardware. Data-Memory mapping 
schemes are investigated and four hardware object 
design schemes are proposed and implemented on a 
CAD tool. Performance evaluation is carried out in 
Altera Quartus tool in terms of speed, logic elements 
and number of transitions. The result of experiments 
shows that object-reference scheme is much better than 
the other 3 schemes in terms of hardware cost, energy 
consumption and speed for FPGA implementation. 
 
Keywords：Java software objects, hardware objects, 
self-timed system. 
 
1. Introduction 
 

SIA roadmap for semiconductor design [1] shows 
that for the last two decades potential design complexity 
has grown at a rate of 58% per year, while the designer 
productivity at the same time has only raised 21% per 
year. This has led to a growing design productivity gap 
between manufacturing capability of chips and the 
functionality that designers can implement in unit time. 
The manufacturing capability is predicted to grow at the 
same rate for another decade and hence the gap must be 
filled by increasing designer productivity rate of growth. 

To fill in the gap, future design methods must 
provide a major productivity leap [2]. This is likely to 
require a paradigm shift. Hardware design will have to 
happen at a much higher level of abstraction. Reuse of 
previously designed components will have to take place 
at a large scale and in an organized way. Time-to-market 
is also pressing issue. With product cycles shortening, 
the timely delivery of a design becomes more and more 
important. 

New design methodologies and tools are quite 
necessary. Object-oriented (OO) design, successfully 
used for several years by the software community, is a 
rather different approach to complexity management 
compared to traditional hardware design methodologies. 
In OO methodologies, however, the designer first 
distinguishes the main data type (or classes) present in 
the system and the operations that should be applied to 
them. The whole system is composed of data (or objects) 
of these types which are interacting by calling one 

another’s methods. In other words, OO methodology 
suggests modeling the system in terms of its constituting 
data objects, while traditional methodologies 
concentrate on structurally decomposing the target 
architecture of the system. 

By utilizing object-orientation in hardware design, 
we can benefit from its abstraction and reuse techniques 
[3, 4]. Moreover, object-orientation would then have the 
potential to unify software and hardware design.  

This paper proposes a novel approach to implement 
reusable software objects in hardware. Four hardware 
object design schemes are proposed and implemented 
on a CAD tool. And, performance evaluation, in terms 
of speed, power consumption and cost, against these 
schemes is carried out by using Altera Quartus II. The 
result of experiments shows that object-reference 
scheme is much better than the other 3 schemes in terms 
of hardware cost, energy consumption and speed. 

This section describes the motivation of this paper. 
The rest of the paper is organized as follows: Section 2 
introduces some background knowledge, including 
previous work and the concepts of software class and 
object. Section 3 describes the data-memory mapping 
analysis. Section 4 presents four designs of hardware 
object implementation schemes.  The implementation 
and performance evaluation of hardware objects are 
described in Section 5 and 6, respectively. Section 7 
summarizes this paper and presents some suggestions 
for future work. 

 
2. Background Knowledge  
 

This section introduces related works and the 
concepts of software objects and classes. 

 
2.1. Related Works 

 
Radetzki [2, 3] proposed a synchronous hardware 

object implementation of a non-derived class. The 
structure of the object circuit is guided by the model of a 
synchronous finite state machine implementation. That 
is there is a memory element for state storage and a 
controller to control state transition and output logic, 
and a feedback of the next state into the state memory. 
No concurrent methods can be invoked at the same time 
due to the multiplexer implementation. This work has 
also been used in the ODETTE project [4], which 
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introduces SystemC-Plus as an extension to SystemC 
with synthesizable object-oriented features [5]. 
   Goudarzi and Hessabi proposed object 
implementation with inheritance and polymorphism [6]. 
Objects are stored in a global memory and an Object 
Management Unit (OMU) maps the virtual address on 
function units to physical address in global memory. 

 
2.2. Object Implementation in Java 
 

Java is an object-oriented language that operates on 
variable sized contiguous lists of words called objects 
[7]. Objects are comprised of many fields. The fields of 
an object are accessed and manipulated by class’s 
methods. These fields can be classified into class (or 
static) and object (or instance) data. Class data are 
created during the class load time and have only one 
copy in the memory called method area. The object data 
are created in the memory called heap whenever a 
“new” operator is performed.  

For example, a Stack class, which skeleton source 
code is shown in Program list 1, has 4 methods (push, 
pop, isFull, isEmpty), two class data (numOfObjects 
and errorFlag) and three object data (statckTop, size and 
stackData).  

Program list 1 Stack 
public class Stack {   
 private byte stackTop=0; 
 private byte size=4; 
 private byte stackData[]; 
 private static byte numOfObjects =0; 
 public static boolean errorFlag=false; 
 public Stack() {stackData=new byte[size];} 
 public Stack(byte stackSize) { 
   size = stackSize;   this(); 
 }  
 void push(byte newdata) {  
if (stackTop < size)   { 

    stackData[stackTop] = newdata; 
    stackTop ++; 
  }  else { 
    errorFlag = true; 
}}} 
 public byte pop() {…}  
 public boolean isFull() {…} 
 public boolean isEmpty() {…}   
}           

 
2.2.1. Software Object Representation  
 

Sun’s Java virtual machine (JVM) uses an indirect 
address object model [8] in which the handle contains 
pointers to the object’s location in the heap and a pointer 
to the object’s method table. 

 
2.2.2. Sizes of Objects 
 

According to the memory space required to allocate 
an object, objects can be classified into fixed-size and 

variable-size ones. For example, the objects created 
based on the Stack class are of variable-size since the 
size of the stack, stackSize, is determined at run time. 
Parameter stackSize is passed to the constructor, 
Stack(byte stackSize), and an array of bytes with size 
stackSize is allocated to stackData. 

A RSA encryption/description class [10], on the 
other hand, can create fixed-size objects only. To 
allocate space for fixed-size objects in hardware is 
easier than for variable-size ones. 
 
3. Data-Memory Mapping Analysis 
 

To implement software objects in hardware, we first 
analyze how to store object’s data and then map these 
data to either global or local memories.  

A class has two types of data: class (i.e. static) data 
and object (i.e. instance or non-static) data. These data 
can be allocated in either a global memory (e.g. main 
memory) or a local memory (e.g. an embedded memory 
in FPGAs or reconfigurable processors). Here we 
assume the capacity of the global memory is much 
larger than that of the local memory. 

For software object implementation in JVM, both 
class data and object data are stored in the global 
memories called “method area” and heap, respectively. 
For hardware IP implementation in FPGAs/VLSI chips, 
class data and object data can be stored in the embedded 
memory (i.e. local memory) of FPGAs or in SRAM or 
DRAM (i.e. global memory) outside the FPGAs/VLSI 
chips. 

Based on types of data and types of memories to 
hold these data, there are four possible data-memory 
mapping schemes as follows: CLOL (Class data and 
Object data in Local memories), CLOG, CGOL, and 
CGOG schemes. 
1. CLOL mapping scheme: In this scheme, both 
class and object data are stored in IP’s (Intellectual 
Property) local memory. The possible hardware 
implementation of CLOL scheme is shown in Fig 1.  

 

 
Fig 1 HO implementation of CLOL mapping and CICO 

scheme 
 

The IP block may contain one or more classes and 
each class may be used to create multiple objects. Each 



class implemented in hardware contains the following 
parts: (a) the method circuits implementing class’s 
methods directly in hardware; (b) the current object data 
space holding the current object data that are directly 
accessed by the method circuits; (c) a static data space 
holding static data; (d) a local heap holding created 
objects; and (e) the object management unit (OMU) 
which copies the object data in local heap to the current 
object data space through the object references which 
point to the objects created in the local heap. 

The method circuits can directly access the class 
data and a copy of object data stored in the current 
object data space. In fact, the method circuits, together 
with temporary object data and class data, are exactly 
the same as a software class. Before “this” (i.e. current 
object reference in Java) object can be manipulated by 
the method circuits, “this” object data in the local heap 
have to be copied to the current object data space. 

This scheme is particularly suitable for modern 
FPGAs in which the method circuits and the OMU can 
be implemented in logic blocks and the static data space, 
the current object data space and the local heap can be 
implemented in the embedded memories.  

Moving object data between the current object data 
space and the local heap is not free and may increase 
hardware cost as well as power consumption. One 
possible improvement, shown in Fig 2, is to remove the 
space of the temporary object data so that the method 
circuits can directly manipulate the object data by using 
the object management unit. 

 

 
Fig 2 Efficient HO implementation and Object-reference 

scheme 
 

2. CLOG mapping scheme: This scheme is similar to 
CLOL except that objects are stored in a global memory 
(e.g. SRAM or DRAM outside the hardware IP) instead 
of a local embedded memory. Thus, the number of 
objects that can be stored in the global heap is much 
larger than that in the local heap. 
3. CGOL mapping scheme: The current object data 
are directly accessed by the methods circuits. Objects 
are stored in the local heap and managed by the object 
management unit. The class data management unit is 
required to access class data in the global heap. 

CGOG mapping scheme: In this scheme, both 
class and object data are stored in a global heap such as 
DRAM. The hardware IP contains the method circuits 
and the Data Management Unit (DMU) which provides 
access mechanism for manipulating both object data and 
class data. This scheme can be implemented by a FPGA 
with an off-the-shelf memory component. The hardware 
methods and the DMU are implemented in FPGA’s logic 
blocks.  

 
Table 1 Comparison of data-memory mapping scheme 

Scheme Class 
Data 

Object 
Data 

FPGA w/o 
embedded 
Memory 

FPGA w 
embedded 
Memory 

VLSI 
Impl. 

Object 
Space 

1.CLOL  LM LM     X Good Good Limited 

2.CLOG  LM GM     X Good Good Huge 

3.CGOL  GM LM     X Good Good Limited 

4.CGOG  GM GM    Good OK Good Huge 

 
Table 1 summarizes these data-memory mapping 

schemes where LM/GM stands for local/global memory. 
The four schemes discussed above can be implemented 
in both VLSI and FPGAs with embedded memory. For 
the FPGAs without embedded memory, only CGOG 
scheme can be applied to this type of FPGAs. Finally, 
the number of objects can be stored in a local memory is 
usually limited; therefore, for the applications which 
need to store huge amount of objects, CLOG and CGOG 
schemes are preferred.  

This paper focuses on implementing hardware 
objects in modern FPGAs with embedded memory 
based on the CLOL scheme. How to implement the 
other three mapping schemes in either FPGAs or VLSI 
is reserved for the future work. 
 
4. Hardware Object Design Schemes  
 

Modern FPGAs such as Altera Stratix II family and 
Xilinx Spatan-III contains a good chunk of embedded 
memories. Thus, hardware IPs containing many classes 
can be implemented inside a single FPGA using CLOL 
hardware object implementation scheme. 

The following sub-sessions propose four efficient 
hardware object implementation (HOI) schemes for 
FPGAs with embedded memory. They are Copy-In 
Copy-Out (CICO), CICO with Object ID check (IDC), 
CICO with Object ID and dirty check (IDCD), and 
object-reference (ObjR) schemes. Note that these 
methods can be applied to VLSI implementation as well. 

 
4.1. Copy-In Copy-Out scheme  
 

In CICO scheme, methods and the OMU are 
implemented in the FPGA’s logic blocks and class data, 
current object data space and the local heap are 
implemented in the embedded memories as shown in 
Fig 1. The main idea of CICO scheme is as follows: 



Objects are created in the local heap. Before any 
function call, “copy-in” the object data from the local 
heap to the current object data space. Whenever 
completing any function call, “copy-out” the current 
object data in the current object data space back to the 
local heap. 

 
4.2. CICO with Object ID check scheme 

 
Due to blindly copy in and move out objects 

between the current object data area and the local heap, 
the CICO scheme may suffer from performance and 
power consumption penalty. This can be improved by 
checking if updating the current object in the current 
object data area is necessary. We can add an additional 
variable, currentObjectID, to track the object stored in 
the current object data area. If the object ID of the 
current method call is the same as the current object ID, 
then there is no need to copy out the current object and 
to move in the new object from the local heap. This can 
save huge amount of energy consumption for a 
high-changing method call sequence.  

 
4.3. CICO with dirty object check scheme  
 

For the CICO with Object ID check scheme, the 
current object data are copied out even though the object 
data are not dirty when a new object is going to be used. 
If the object stored in the local memory is intact, there is 
no need to carry out the copy-out operation. This can be 
achieved by adding a dirty bit to check if the current 
object is clean or dirty. Such scheme is called CICO 
with Object ID and dirty check scheme.  

One of the advantages of this method is to further 
reduce the communication overhead of copying out 
object data if the current object is not dirty. The extra 
hardware cost of this scheme includes checking dirty bit 
and detecting dirty object data. If object-change rate is 
high and most method calls are read-only ones than the 
improvement can be dramatically. 

 
4.4. Object-Reference scheme 

 
The previous three hardware object implementation 

schemes contain the space to cache the current object 
(i.e. “this” object) to be accessed by hardware method 
circuits. If we can merge the current object data into the 
local heap, there is no need to carry out copy-in and 
copy-out operations. Such scheme is called 
object-reference scheme and is shown in Fig 2. 

In this scheme, object data are created directly in the 
local heap and accessed directly by methods through the 
OMU. Every object created in the local heap is 
associated with an object reference which points to the 
object. Object references are stored in an array, 
objectRefs, and objects are stored in another array, 
objStore. Both arrays are implemented in two embedded 

memories inside FPGAs. Since the object data are 
stored in objectStore array and there is no current object 
data space, the original object (instance) variables have 
to be mapped into objectStore’s location based on the 
object reference. Thus, the instance variables shown in 
all methods are renamed to the objectStore references.  

 
4. Implementation  

 
The hardware object design schemes mentioned in 

previous section can be applied to both synchronous and 
asynchronous systems. One of the severe problems of 
synchronous object implementation is that it is very 
difficult to reuse these synchronous hardware objects in 
SOC design due to timing issue. We believe that, for 
hardware IP reuse, self-timed system technology is a 
better choice due to the modularity, composibility, low 
electro magnetic interference (EMI) and low power 
consumption [11-13]. 
 
5.1. Method Circuit Implementation 
 

The design flow of hardware method (API) 
implementation is shown in Fig 3. Firstly, the 
functionality of Java classes are tested and verified in an 
IDE (integrated development environment) tool such as 
JBuilder, NetBean or Eclipse. Secondly, the Java classes 
are then translated into VHDL codes by SOCAD [9, 10], 
a CAD tool for SOC design. Together with the 
self-timed cell library, the VHDL codes are then 
simulated and verified in either FPGA design flow (such 
as Altera Quartus or Xilinx ISE) or VLSI design flow. 
This paper focuses on FPGA design flow. 
 

 
Fig 3 Design flow of method circuit implementation 
 

5.2. Hardware Object Implementation 
 

The current version of SOCAD does compile 
software methods into hardware VHDL codes; however, 
it does not support hardware objects, yet. Our 
methodology proposed in section 4 can add hardware 
object functionality to SOCAD as shown in Fig 4. That 
is our hardware object implementation schemes can be 
applied to Java classes to produce new Java classes with 
object management units. The Java classes with OMUs 



are first verified in a Java IDE tool and then translated 
into VHDL codes by SOCAD tool. 

 

 
Fig 4 Design flow of hardware object implementation 

 
Hardware object implementation has two cases to be 

considered: objects with fixed size and objects with 
variable size. Due to the space limitation, we show only 
CICO scheme with fixed size object in detail. The 
translation steps of the CICO scheme for fixed-size 
objects are listed as follows: 
For each class do the following steps: 
1. Global constants: 

(a). Set a constant, MAX_NO_OF_OBJS, to indicate 
the maximal number of objects that can be created 
in the local heap.  

(b). Compute the object (i.e. instance data) size of the 
class in interest and set the object size in the 
constant, SIZE_OF_OBJ. 

2. Heap (or object) management: 
(a). Create a heap space with its size equal to the 

maximal number of objects times the size of the 
object (e.g. objStore= new byte[SIZE_OF_OBJ* 
MAX_NO_OF_OBJS];). 

(b). Create two static variables, heapTop and 
numberOfObjects, to point to the free space of the 
local heap and to record the number of objects 
created in the local heap, respectively. 

(c). Add three private methods, newObject, copyIn 
and copyOut, to create and initialize an object in 
the local heap, to copy the data in the current 
object data space into the local heap and to copy 
the object data in the local heap into the current 
object data space, respectively. 

(d). For each public constructor, c, in the class, add a 
statement to the end of the constructor, c, to call 
newObject method. The newObject method 
allocates a space for the object in the local heap 
and sets the initial values of the instance data. 

3. Object reference management: 
(a). Create a static variable, objectBaseAddress, to 

point to the first address of the current object in 
the local heap. 

(b). Create an array of object references to keep tracks 
of the base (start) address of the objects created in 
the local heap.  

(c). Add a private method, setObjectBaseAddress 
(thisObjID), to adjust the objectBaseAddress 
variable to the start address of the object in the 

local heap based on the thisObjID.  
4. Overloaded method modification: For each public 

method, m, in the class, add a new public 
overloaded method with an additional parameter, 
thisObjId. The new overloaded method performs the 
following tasks: 

(a). Call setObjectBaseAddress method to adjust the 
objectBaseAddress pointing to the start address of 
the object in the local heap. 

(b). Call copyIn method to move object data based on 
thisObjID in the local heap to the current object 
data space. 

(c). Call the method m and keep the return value in a 
local variable, returnResult, if necessary. 

(d). Call copyOut method to copy the current object 
data back to the local heap. 

(e). Return returnResult value if necessary. 
 
5.3. Verification 
 

The Altera Quartus can be used to verify the 
correctness of hardware objects in VHDL codes. The 
source code of Java, Java classes with OMUs, complied 
VHDL codes, detail verification and simulation results 
with Altera project can be found from our web site [10]. 
Also a version of executable SOCAD tool with a set of 
self-timed cell library can be downloaded from [9]. 
 
5. Performance Evaluation 
 

The objectives of this section is to carry out the 
performance evaluation of the four HO schemes in 
terms of the number of logic cells (i.e. hardware cost), 
signal transitions (i.e. energy consumption) and speed. 
The experiment is carried out by using Altera Quartus II 
4.2 Tool with the Stratix- EP1S10B672C6 FPGAs.  

1. Hardware cost: Table 2 shows the summary of 
hardware cost in terms of the number of logic blocks 
and the embedded RAM used. A RSA/Stack IP is set to 
hold up to 10/3 hardware objects. For stack/RSA IP 
columns 2/7 and 3/8 show the number of logic blocks 
used and the ratio of ObjR scheme, respectively and 
columns 4/9, 5/10 and 6/- show the embedded memory 
usage for objStore, objRefs and stackData, respectively. 
 

 Table 2 Hardware Cost of IPs 
Stack IP RSA IP 

Embedded 
RAM (byte) 

Embedded 
RAM (byte)Scheme 

#N
 

of 
LBs 

ratio 
to 
O

bjR

Obj 

Store

Obj 

Refs 

Stack 

Data 

#N
 

of 
LBs 

ratio 
to 
O

bjR

Obj 

Store

Obj

Refs

CICO 3019 1.27 20 3 5 4370 1.02 30 10 
IDC 3166 1.32 20 3 5 4479 1.04 30 10 
IDCD 3201 1.34 20 3 5 4523 1.06 30 10 
ObjR 2383 1 20 3 N/A 4287 1 30 10 

 
The preliminary result shows that object-reference 

scheme uses much less logic blocks in variable-size 



objects (i.e. Stack IP) as shown in columns 2 and 3 of 
Table 2. However, the improvement is not impressive in 
fixed-size objects as shown in columns 7 and 8. 

2. Number of Signal Transitions: For self-timed 
circuits, the energy consumption is proportional to the 
signal transitions. Table 3 shows the average number of 
transitions applying the same input patterns for the four 
schemes. Quartus Power Analyzer tool (i.e. PowerPlay) 
is used to measure the power consumption. Since it is 
designed for synchronous circuits, the result may be 
used for reference only. Columns #T, DTPD and SP 
(speedup) denote the total number of signal transitions, 
dynamic thermal power dissipation and the ratio of 
signal transitions, respectively. The result shows that, 
for Stack, object-reference scheme is about 4/2/2 times 
less power consumption than CICO/IDC/ICDC 
hardware object schemes. However, for the RSA IP, the 
power consumptions of these four schemes are similar. 
This is because the total number of transitions of 
copy-in and copy-out occupies only a small portion of 
the whole transitions of RSA encryption or decryption 
operations. 
 

Table 3 Comparison of #Transitions 

 
 
3. Speed: Push operations of Stack IP are used to 
measure the speed performance which is strongly 
depended on object change rate. Table 4 shows the 
execution time based on 30% and 100% object change 
rate. The result shows that object-reference scheme 
outperforms the other three schemes by a factor of about 
6 and 2 for high-object and low-object change rates, 
respectively. 

 
Table 4 Speedup of different object change rates 

100% object change rate 30% object change rate  
CICO IDC IDCD ObjR CICO IDC IDCD ObjR 

Min 2.636 2.86 2.868 0.474 2.634 0.187 0.197 0.473 
Max 3.069 2.87 2.877 0.478 3.064 2.865 2.877 0.476 
Avg 2.853 2.866 2.873 0.476 2.807 0.99 1.001 0.474 

spdup 1 0.995 0.991 5.99 1 2.835 2.804 5.921 

 
6. Conclusions and Future Works 
 

This paper proposes a new approach to implement 
software objects in hardware. Data-memory mapping 
schemes are investigated and four hardware object 
implementation schemes based on CLOL scheme are 
proposed and implemented.  

Performance evaluation is carried out by using 

Altera Quartus tool in terms of speed, logic elements 
and number of transitions. Result of experiments shows 
that object-reference scheme is much better than the 
other 3 schemes in terms of hardware cost, energy 
consumption and speed.  

Our goal is to implement time-to-market reusable 
hardware objects with adequate performance, less EMI 
and low power consumption based on self-timed system 
technology. 

There are four possible directions for further work: 
Firstly, the granularity of dirty check can be important 
since it is not uncommon that the objects to be created 
can be large. Secondly, this paper deals with only those 
classes without inheritance. How to implement software 
classes with inheritance in classes is still under 
investigation. Thirdly this paper investigates only on 
CLOL mapping scheme. It is very interesting to explore 
and implement the other three mapping schemes. Finally, 
polymorphism and garbage collection are not yet being 
considered in this paper. 
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