
Design and Implementation of Software Objects in Hardware

Fu-Chiung Cheng Hung-Chi Wu

Department of Computer Science and Engineering
Tatung University

Taipei, 104 Taiwan, R.O.C.
fccheng@ttu.edu.tw wuandy@ms10.hinet.net

Abstract

This paper proposes a novel approach to implement
software object in hardware. Data-Memory mapping
schemes are investigated and four hardware object
design schemes are proposed and implemented on a
CAD tool. Performance evaluation is carried out in
Altera Quartus tool in terms of speed, logic elements
and number of transitions. The result of experiments
shows that object-reference scheme is much better than
the other 3 schemes in terms of hardware cost, energy
consumption and speed for FPGA implementation.

Keywords：Java software objects, hardware objects,
self-timed system.

1. Introduction

SIA roadmap for semiconductor design [1] shows
that for the last two decades potential design complexity
has grown at a rate of 58% per year, while the designer
productivity at the same time has only raised 21% per
year. This has led to a growing design productivity gap
between manufacturing capability of chips and the
functionality that designers can implement in unit time.
The manufacturing capability is predicted to grow at the
same rate for another decade and hence the gap must be
filled by increasing designer productivity rate of growth.

To fill in the gap, future design methods must
provide a major productivity leap [2]. This is likely to
require a paradigm shift. Hardware design will have to
happen at a much higher level of abstraction. Reuse of
previously designed components will have to take place
at a large scale and in an organized way. Time-to-market
is also pressing issue. With product cycles shortening,
the timely delivery of a design becomes more and more
important.

New design methodologies and tools are quite
necessary. Object-oriented (OO) design, successfully
used for several years by the software community, is a
rather different approach to complexity management
compared to traditional hardware design methodologies.
In OO methodologies, however, the designer first
distinguishes the main data type (or classes) present in
the system and the operations that should be applied to
them. The whole system is composed of data (or objects)
of these types which are interacting by calling one

another’s methods. In other words, OO methodology
suggests modeling the system in terms of its constituting
data objects, while traditional methodologies
concentrate on structurally decomposing the target
architecture of the system.

By utilizing object-orientation in hardware design,
we can benefit from its abstraction and reuse techniques
[3, 4]. Moreover, object-orientation would then have the
potential to unify software and hardware design.

This paper proposes a novel approach to implement
reusable software objects in hardware. Four hardware
object design schemes are proposed and implemented
on a CAD tool. And, performance evaluation, in terms
of speed, power consumption and cost, against these
schemes is carried out by using Altera Quartus II. The
result of experiments shows that object-reference
scheme is much better than the other 3 schemes in terms
of hardware cost, energy consumption and speed.

This section describes the motivation of this paper.
The rest of the paper is organized as follows: Section 2
introduces some background knowledge, including
previous work and the concepts of software class and
object. Section 3 describes the data-memory mapping
analysis. Section 4 presents four designs of hardware
object implementation schemes. The implementation
and performance evaluation of hardware objects are
described in Section 5 and 6, respectively. Section 7
summarizes this paper and presents some suggestions
for future work.

2. Background Knowledge

This section introduces related works and the
concepts of software objects and classes.

2.1. Related Works

Radetzki [2, 3] proposed a synchronous hardware

object implementation of a non-derived class. The
structure of the object circuit is guided by the model of a
synchronous finite state machine implementation. That
is there is a memory element for state storage and a
controller to control state transition and output logic,
and a feedback of the next state into the state memory.
No concurrent methods can be invoked at the same time
due to the multiplexer implementation. This work has
also been used in the ODETTE project [4], which

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

introduces SystemC-Plus as an extension to SystemC
with synthesizable object-oriented features [5].
 Goudarzi and Hessabi proposed object
implementation with inheritance and polymorphism [6].
Objects are stored in a global memory and an Object
Management Unit (OMU) maps the virtual address on
function units to physical address in global memory.

2.2. Object Implementation in Java

Java is an object-oriented language that operates on
variable sized contiguous lists of words called objects
[7]. Objects are comprised of many fields. The fields of
an object are accessed and manipulated by class’s
methods. These fields can be classified into class (or
static) and object (or instance) data. Class data are
created during the class load time and have only one
copy in the memory called method area. The object data
are created in the memory called heap whenever a
“new” operator is performed.

For example, a Stack class, which skeleton source
code is shown in Program list 1, has 4 methods (push,
pop, isFull, isEmpty), two class data (numOfObjects
and errorFlag) and three object data (statckTop, size and
stackData).

Program list 1 Stack
public class Stack {
 private byte stackTop=0;
 private byte size=4;
 private byte stackData[];
 private static byte numOfObjects =0;
 public static boolean errorFlag=false;
 public Stack() {stackData=new byte[size];}
 public Stack(byte stackSize) {
 size = stackSize; this();
 }
 void push(byte newdata) {
if (stackTop < size) {

 stackData[stackTop] = newdata;
 stackTop ++;
 } else {
 errorFlag = true;
}}}
 public byte pop() {…}
 public boolean isFull() {…}
 public boolean isEmpty() {…}
}

2.2.1. Software Object Representation

Sun’s Java virtual machine (JVM) uses an indirect
address object model [8] in which the handle contains
pointers to the object’s location in the heap and a pointer
to the object’s method table.

2.2.2. Sizes of Objects

According to the memory space required to allocate
an object, objects can be classified into fixed-size and

variable-size ones. For example, the objects created
based on the Stack class are of variable-size since the
size of the stack, stackSize, is determined at run time.
Parameter stackSize is passed to the constructor,
Stack(byte stackSize), and an array of bytes with size
stackSize is allocated to stackData.

A RSA encryption/description class [10], on the
other hand, can create fixed-size objects only. To
allocate space for fixed-size objects in hardware is
easier than for variable-size ones.

3. Data-Memory Mapping Analysis

To implement software objects in hardware, we first
analyze how to store object’s data and then map these
data to either global or local memories.

A class has two types of data: class (i.e. static) data
and object (i.e. instance or non-static) data. These data
can be allocated in either a global memory (e.g. main
memory) or a local memory (e.g. an embedded memory
in FPGAs or reconfigurable processors). Here we
assume the capacity of the global memory is much
larger than that of the local memory.

For software object implementation in JVM, both
class data and object data are stored in the global
memories called “method area” and heap, respectively.
For hardware IP implementation in FPGAs/VLSI chips,
class data and object data can be stored in the embedded
memory (i.e. local memory) of FPGAs or in SRAM or
DRAM (i.e. global memory) outside the FPGAs/VLSI
chips.

Based on types of data and types of memories to
hold these data, there are four possible data-memory
mapping schemes as follows: CLOL (Class data and
Object data in Local memories), CLOG, CGOL, and
CGOG schemes.
1. CLOL mapping scheme: In this scheme, both
class and object data are stored in IP’s (Intellectual
Property) local memory. The possible hardware
implementation of CLOL scheme is shown in Fig 1.

Fig 1 HO implementation of CLOL mapping and CICO

scheme

The IP block may contain one or more classes and
each class may be used to create multiple objects. Each

class implemented in hardware contains the following
parts: (a) the method circuits implementing class’s
methods directly in hardware; (b) the current object data
space holding the current object data that are directly
accessed by the method circuits; (c) a static data space
holding static data; (d) a local heap holding created
objects; and (e) the object management unit (OMU)
which copies the object data in local heap to the current
object data space through the object references which
point to the objects created in the local heap.

The method circuits can directly access the class
data and a copy of object data stored in the current
object data space. In fact, the method circuits, together
with temporary object data and class data, are exactly
the same as a software class. Before “this” (i.e. current
object reference in Java) object can be manipulated by
the method circuits, “this” object data in the local heap
have to be copied to the current object data space.

This scheme is particularly suitable for modern
FPGAs in which the method circuits and the OMU can
be implemented in logic blocks and the static data space,
the current object data space and the local heap can be
implemented in the embedded memories.

Moving object data between the current object data
space and the local heap is not free and may increase
hardware cost as well as power consumption. One
possible improvement, shown in Fig 2, is to remove the
space of the temporary object data so that the method
circuits can directly manipulate the object data by using
the object management unit.

Fig 2 Efficient HO implementation and Object-reference

scheme

2. CLOG mapping scheme: This scheme is similar to
CLOL except that objects are stored in a global memory
(e.g. SRAM or DRAM outside the hardware IP) instead
of a local embedded memory. Thus, the number of
objects that can be stored in the global heap is much
larger than that in the local heap.
3. CGOL mapping scheme: The current object data
are directly accessed by the methods circuits. Objects
are stored in the local heap and managed by the object
management unit. The class data management unit is
required to access class data in the global heap.

CGOG mapping scheme: In this scheme, both
class and object data are stored in a global heap such as
DRAM. The hardware IP contains the method circuits
and the Data Management Unit (DMU) which provides
access mechanism for manipulating both object data and
class data. This scheme can be implemented by a FPGA
with an off-the-shelf memory component. The hardware
methods and the DMU are implemented in FPGA’s logic
blocks.

Table 1 Comparison of data-memory mapping scheme

Scheme Class
Data

Object
Data

FPGA w/o
embedded
Memory

FPGA w
embedded
Memory

VLSI
Impl.

Object
Space

1.CLOL LM LM X Good Good Limited

2.CLOG LM GM X Good Good Huge

3.CGOL GM LM X Good Good Limited

4.CGOG GM GM Good OK Good Huge

Table 1 summarizes these data-memory mapping

schemes where LM/GM stands for local/global memory.
The four schemes discussed above can be implemented
in both VLSI and FPGAs with embedded memory. For
the FPGAs without embedded memory, only CGOG
scheme can be applied to this type of FPGAs. Finally,
the number of objects can be stored in a local memory is
usually limited; therefore, for the applications which
need to store huge amount of objects, CLOG and CGOG
schemes are preferred.

This paper focuses on implementing hardware
objects in modern FPGAs with embedded memory
based on the CLOL scheme. How to implement the
other three mapping schemes in either FPGAs or VLSI
is reserved for the future work.

4. Hardware Object Design Schemes

Modern FPGAs such as Altera Stratix II family and
Xilinx Spatan-III contains a good chunk of embedded
memories. Thus, hardware IPs containing many classes
can be implemented inside a single FPGA using CLOL
hardware object implementation scheme.

The following sub-sessions propose four efficient
hardware object implementation (HOI) schemes for
FPGAs with embedded memory. They are Copy-In
Copy-Out (CICO), CICO with Object ID check (IDC),
CICO with Object ID and dirty check (IDCD), and
object-reference (ObjR) schemes. Note that these
methods can be applied to VLSI implementation as well.

4.1. Copy-In Copy-Out scheme

In CICO scheme, methods and the OMU are
implemented in the FPGA’s logic blocks and class data,
current object data space and the local heap are
implemented in the embedded memories as shown in
Fig 1. The main idea of CICO scheme is as follows:

Objects are created in the local heap. Before any
function call, “copy-in” the object data from the local
heap to the current object data space. Whenever
completing any function call, “copy-out” the current
object data in the current object data space back to the
local heap.

4.2. CICO with Object ID check scheme

Due to blindly copy in and move out objects

between the current object data area and the local heap,
the CICO scheme may suffer from performance and
power consumption penalty. This can be improved by
checking if updating the current object in the current
object data area is necessary. We can add an additional
variable, currentObjectID, to track the object stored in
the current object data area. If the object ID of the
current method call is the same as the current object ID,
then there is no need to copy out the current object and
to move in the new object from the local heap. This can
save huge amount of energy consumption for a
high-changing method call sequence.

4.3. CICO with dirty object check scheme

For the CICO with Object ID check scheme, the
current object data are copied out even though the object
data are not dirty when a new object is going to be used.
If the object stored in the local memory is intact, there is
no need to carry out the copy-out operation. This can be
achieved by adding a dirty bit to check if the current
object is clean or dirty. Such scheme is called CICO
with Object ID and dirty check scheme.

One of the advantages of this method is to further
reduce the communication overhead of copying out
object data if the current object is not dirty. The extra
hardware cost of this scheme includes checking dirty bit
and detecting dirty object data. If object-change rate is
high and most method calls are read-only ones than the
improvement can be dramatically.

4.4. Object-Reference scheme

The previous three hardware object implementation

schemes contain the space to cache the current object
(i.e. “this” object) to be accessed by hardware method
circuits. If we can merge the current object data into the
local heap, there is no need to carry out copy-in and
copy-out operations. Such scheme is called
object-reference scheme and is shown in Fig 2.

In this scheme, object data are created directly in the
local heap and accessed directly by methods through the
OMU. Every object created in the local heap is
associated with an object reference which points to the
object. Object references are stored in an array,
objectRefs, and objects are stored in another array,
objStore. Both arrays are implemented in two embedded

memories inside FPGAs. Since the object data are
stored in objectStore array and there is no current object
data space, the original object (instance) variables have
to be mapped into objectStore’s location based on the
object reference. Thus, the instance variables shown in
all methods are renamed to the objectStore references.

4. Implementation

The hardware object design schemes mentioned in

previous section can be applied to both synchronous and
asynchronous systems. One of the severe problems of
synchronous object implementation is that it is very
difficult to reuse these synchronous hardware objects in
SOC design due to timing issue. We believe that, for
hardware IP reuse, self-timed system technology is a
better choice due to the modularity, composibility, low
electro magnetic interference (EMI) and low power
consumption [11-13].

5.1. Method Circuit Implementation

The design flow of hardware method (API)
implementation is shown in Fig 3. Firstly, the
functionality of Java classes are tested and verified in an
IDE (integrated development environment) tool such as
JBuilder, NetBean or Eclipse. Secondly, the Java classes
are then translated into VHDL codes by SOCAD [9, 10],
a CAD tool for SOC design. Together with the
self-timed cell library, the VHDL codes are then
simulated and verified in either FPGA design flow (such
as Altera Quartus or Xilinx ISE) or VLSI design flow.
This paper focuses on FPGA design flow.

Fig 3 Design flow of method circuit implementation

5.2. Hardware Object Implementation

The current version of SOCAD does compile
software methods into hardware VHDL codes; however,
it does not support hardware objects, yet. Our
methodology proposed in section 4 can add hardware
object functionality to SOCAD as shown in Fig 4. That
is our hardware object implementation schemes can be
applied to Java classes to produce new Java classes with
object management units. The Java classes with OMUs

are first verified in a Java IDE tool and then translated
into VHDL codes by SOCAD tool.

Fig 4 Design flow of hardware object implementation

Hardware object implementation has two cases to be

considered: objects with fixed size and objects with
variable size. Due to the space limitation, we show only
CICO scheme with fixed size object in detail. The
translation steps of the CICO scheme for fixed-size
objects are listed as follows:
For each class do the following steps:
1. Global constants:

(a). Set a constant, MAX_NO_OF_OBJS, to indicate
the maximal number of objects that can be created
in the local heap.

(b). Compute the object (i.e. instance data) size of the
class in interest and set the object size in the
constant, SIZE_OF_OBJ.

2. Heap (or object) management:
(a). Create a heap space with its size equal to the

maximal number of objects times the size of the
object (e.g. objStore= new byte[SIZE_OF_OBJ*
MAX_NO_OF_OBJS];).

(b). Create two static variables, heapTop and
numberOfObjects, to point to the free space of the
local heap and to record the number of objects
created in the local heap, respectively.

(c). Add three private methods, newObject, copyIn
and copyOut, to create and initialize an object in
the local heap, to copy the data in the current
object data space into the local heap and to copy
the object data in the local heap into the current
object data space, respectively.

(d). For each public constructor, c, in the class, add a
statement to the end of the constructor, c, to call
newObject method. The newObject method
allocates a space for the object in the local heap
and sets the initial values of the instance data.

3. Object reference management:
(a). Create a static variable, objectBaseAddress, to

point to the first address of the current object in
the local heap.

(b). Create an array of object references to keep tracks
of the base (start) address of the objects created in
the local heap.

(c). Add a private method, setObjectBaseAddress
(thisObjID), to adjust the objectBaseAddress
variable to the start address of the object in the

local heap based on the thisObjID.
4. Overloaded method modification: For each public

method, m, in the class, add a new public
overloaded method with an additional parameter,
thisObjId. The new overloaded method performs the
following tasks:

(a). Call setObjectBaseAddress method to adjust the
objectBaseAddress pointing to the start address of
the object in the local heap.

(b). Call copyIn method to move object data based on
thisObjID in the local heap to the current object
data space.

(c). Call the method m and keep the return value in a
local variable, returnResult, if necessary.

(d). Call copyOut method to copy the current object
data back to the local heap.

(e). Return returnResult value if necessary.

5.3. Verification

The Altera Quartus can be used to verify the
correctness of hardware objects in VHDL codes. The
source code of Java, Java classes with OMUs, complied
VHDL codes, detail verification and simulation results
with Altera project can be found from our web site [10].
Also a version of executable SOCAD tool with a set of
self-timed cell library can be downloaded from [9].

5. Performance Evaluation

The objectives of this section is to carry out the
performance evaluation of the four HO schemes in
terms of the number of logic cells (i.e. hardware cost),
signal transitions (i.e. energy consumption) and speed.
The experiment is carried out by using Altera Quartus II
4.2 Tool with the Stratix- EP1S10B672C6 FPGAs.

1. Hardware cost: Table 2 shows the summary of
hardware cost in terms of the number of logic blocks
and the embedded RAM used. A RSA/Stack IP is set to
hold up to 10/3 hardware objects. For stack/RSA IP
columns 2/7 and 3/8 show the number of logic blocks
used and the ratio of ObjR scheme, respectively and
columns 4/9, 5/10 and 6/- show the embedded memory
usage for objStore, objRefs and stackData, respectively.

 Table 2 Hardware Cost of IPs
Stack IP RSA IP

Embedded
RAM (byte)

Embedded
RAM (byte)Scheme

#N

of
LBs

ratio
to
O

bjR

Obj

Store

Obj

Refs

Stack

Data

#N

of
LBs

ratio
to
O

bjR

Obj

Store

Obj

Refs

CICO 3019 1.27 20 3 5 4370 1.02 30 10
IDC 3166 1.32 20 3 5 4479 1.04 30 10
IDCD 3201 1.34 20 3 5 4523 1.06 30 10
ObjR 2383 1 20 3 N/A 4287 1 30 10

The preliminary result shows that object-reference

scheme uses much less logic blocks in variable-size

objects (i.e. Stack IP) as shown in columns 2 and 3 of
Table 2. However, the improvement is not impressive in
fixed-size objects as shown in columns 7 and 8.

2. Number of Signal Transitions: For self-timed
circuits, the energy consumption is proportional to the
signal transitions. Table 3 shows the average number of
transitions applying the same input patterns for the four
schemes. Quartus Power Analyzer tool (i.e. PowerPlay)
is used to measure the power consumption. Since it is
designed for synchronous circuits, the result may be
used for reference only. Columns #T, DTPD and SP
(speedup) denote the total number of signal transitions,
dynamic thermal power dissipation and the ratio of
signal transitions, respectively. The result shows that,
for Stack, object-reference scheme is about 4/2/2 times
less power consumption than CICO/IDC/ICDC
hardware object schemes. However, for the RSA IP, the
power consumptions of these four schemes are similar.
This is because the total number of transitions of
copy-in and copy-out occupies only a small portion of
the whole transitions of RSA encryption or decryption
operations.

Table 3 Comparison of #Transitions

3. Speed: Push operations of Stack IP are used to
measure the speed performance which is strongly
depended on object change rate. Table 4 shows the
execution time based on 30% and 100% object change
rate. The result shows that object-reference scheme
outperforms the other three schemes by a factor of about
6 and 2 for high-object and low-object change rates,
respectively.

Table 4 Speedup of different object change rates

100% object change rate 30% object change rate
CICO IDC IDCD ObjR CICO IDC IDCD ObjR

Min 2.636 2.86 2.868 0.474 2.634 0.187 0.197 0.473
Max 3.069 2.87 2.877 0.478 3.064 2.865 2.877 0.476
Avg 2.853 2.866 2.873 0.476 2.807 0.99 1.001 0.474

spdup 1 0.995 0.991 5.99 1 2.835 2.804 5.921

6. Conclusions and Future Works

This paper proposes a new approach to implement
software objects in hardware. Data-memory mapping
schemes are investigated and four hardware object
implementation schemes based on CLOL scheme are
proposed and implemented.

Performance evaluation is carried out by using

Altera Quartus tool in terms of speed, logic elements
and number of transitions. Result of experiments shows
that object-reference scheme is much better than the
other 3 schemes in terms of hardware cost, energy
consumption and speed.

Our goal is to implement time-to-market reusable
hardware objects with adequate performance, less EMI
and low power consumption based on self-timed system
technology.

There are four possible directions for further work:
Firstly, the granularity of dirty check can be important
since it is not uncommon that the objects to be created
can be large. Secondly, this paper deals with only those
classes without inheritance. How to implement software
classes with inheritance in classes is still under
investigation. Thirdly this paper investigates only on
CLOL mapping scheme. It is very interesting to explore
and implement the other three mapping schemes. Finally,
polymorphism and garbage collection are not yet being
considered in this paper.

7. References

[1] International Technology Roadmap for Semiconductors

(ITRS) Design, 2001.
[2] Radetzki M., Synthesis of digital circuits from

object-oriented specifications. PhD Thesis, University of
Oldenburg, 2000.

[3] T. Kuhn, W. Rosenstiel, U. Kebschull. Object Oriented
Hardware Modeling and Simulation Based on Java. Proc.
International Workshop on IP Based Synthesis and
System Design, 1998.

[4] The ODETTE Project, Within European commission IST
Research Program, http://odette.offis.de/.

[5] Grimpe E., Timmermann B., Fandrey T., Biniasch R.,
Oppenheimer F., SystemC object-oriented extensions and
synthesis features. Forum on Design and Specification
Languages, 2002.

[6] M. Goudarzi, S. Hessabi, “Synthesis of Object-Oriented
Descriptions Modeled at Functional-Level,” World
Scientific and Engineering Academy and Society
Transactions on Computers, Athens, 2003.

[7] Sun Microsystems Inc. The Java Virtual Machine
Specification, 1996

[8] Bill Venners. Inside the Java 2 Virtual Machine.
McGraw-Hill Companies, Inc., 1999.

[9] SOCAD, A CAD tool for SOC Design, 4C applied
technologies lab. of CSE Dept. Tatung University, Taiwan,
http://4c.cse.ttu.edu.tw/snipsnap/space/SoCAD.

[10] Paper source code URL:
http://homepage.ttu.edu.tw/d9406002/index.html

[11] A. Davis and S.M. Nowick. An Introduction to
Asynchronous Circuit Design. Computer Science
Department, University of Utah, Sep. 1997.

[12] Fu-Chiung Cheng, Stephen H. Unger and Michael
Theobald, "Self-timed Carry-Lookahead Adders", IEEE
Transactions on Computers, pages 659-672, July 2000.

[13] Fu-Chiung Cheng, "Practical Design and Performance
Evaluation of Completion Detection Circuits" ICCD'98,
pages 354--359. IEEE Computer Society Press, 1998.

