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Abstract 
 

This paper examines the use of a switch based 
architecture to implement a Radix-2 decimation in 
frequency Fast Fourier Transform Engine. The 
architecture interconnects M processing elements 
with 2*M memories. An algorithm to detect and 
resolve memory access contention is presented. The 
implementation of 1024-point FFTs with 2 
processing elements is discussed in detail, including 
timing and place-and-route results. The switch based 
architecture provides a factor of M speedup over a 
single processing element realization.  
 
1. Introduction 
 

The Fast Fourier Transform, proposed by [1], is a 
standard method for computing the Discrete Fourier 
Transform (DFT). A variety of architectures have 
been proposed to increase the speed, reduce the 
power consumption.  

A single memory architecture consists of a scalar 
processor connected to a single N-word memory via 
a bidirectional bus. While this architecture is simple, 
its performance suffers from inefficient memory 
bandwidth. A cache memory architecture adds a 
cache memory between the processor and the 
memory to increase the effective memory bandwidth. 
Baas, in [2], presented a cache FFT algorithm which 
increases energy efficiency and effectively lowers the 
power consumption.  

A dual memory architecture, implemented in [3], 
uses two memories connected to a digital array signal 
processor. The programmable array controller  
generates addresses to memories in a ping-pong 
fashion.  

The processor array architecture [4], consists of 
independent processing elements, with local buffers, 
which are connected using an interconnect network.  

Pipeline FFT architectures, introduced in [5], 
contain logrN blocks; each block consists of delay 

lines, arithmetic units that implement a radix-r FFT 
butterfly operation and ROMs for twiddle factors. A 
variety of pipeline FFTs have been implemented [6-
9]. Most pipeline FFT realizations use delay lines for 
data reordering between the processing elements.  
Although this gives simple data flow architecture, it 
causes high power consumption.  

Several techniques have been proposed for 
memory address generation. Cohen described an 
address generation scheme based on a counter, 
shifters and rotators [14]. It allows parallel 
organization of memory so that the data used at any 
instant reside in different memories. Pease proposed 
dividing the memory into sub-memories for 
overlapping the access [15]. He observed that the 
operand addresses differ only in the (n-i)-th bit for 
the butterfly operand pair in stage i, where n is 
number of address bits. A multi-bank memory 
address assignment for a radix-r FFT was developed 
in [16]. The memory assignment minimizes the 
memory size and allows conflict-free simultaneous 
memory access. Ma developed a fast address 
generation scheme [17] with hardware cost 
comparable to the address generation scheme in [14]. 
Ma and Wanhammar proposed an address generation 
scheme in [18] to reduce the hardware complexity 
and power consumption. 

This paper describes a scalable switch-based 
architecture to implement a radix-2 decimation in 
frequency N-point FFT engine. The switch fabric 
interconnects processing elements (PEs) with single-
port memories and ROMs. The architecture 
concentrates the connectivity in the switch fabric, 
which enhances the power, area and timing. 
Moreover, unlike pipeline FFTs, the switch-based 
architecture does not use delay lines for data 
reordering, instead, RAMs are used for temporary 
data storage resulting in a significant reduction in 
power consumption. To detect and resolve memory 
contention (which causes performance degradation), 
an algorithm to eliminate memory hazards is 
presented. Finally, the paper presents the 
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implementation of a 1024-point FFT using two PEs 
that perform radix-2 butterfly operations. The 
architecture and algorithm can be easily extended to 
other values of M and other radices; for example an 
architecture composed of (8, 16, 32, …) RAMs, (4, 
8, 16, …) ROMs and (4, 8, 16, …) processing 
elements (PEs). Furthermore, the authors believe that 
the algorithm could be modified to substantially 
reduce the number of needed ROMs but this 
enhancement is outside the scope of this paper. 
 
2. Switch Based Architecture 
 
The switch based architecture is shown on Figure 1. 
It consists of a switch fabric, M processing elements 
(PEs), 2M memories and M read only memories. It is 
assumed that M=2k, where k is a positive integer. 
Each PE has three inputs (a, b, w) and two outputs (c, 
d) and performs a radix-2 decimation in frequency 
butterfly operation: 

c  = a + b 
 
d = (a – b) * w (1) 
 

All of the data (a, b, c, d and w) are complex pairs. 
Data (a, b) are the inputs, w is the twiddle factor and 
(c, d) are the outputs.  

The memory elements store the inputs, 
intermediate results and the final results. The 
memories shown as MEMs on Figure 1 are 
read/write random access memories (e.g., RAM, 
cache or register files), with size equal to at least 
N/(2*M). The other type of memory elements stores 
the pre-computed twiddle factors shown as ROMs in 
Figure 1. In spite of the name, these memories may 
be implemented with either read only or read/write 
memories. The size of each ROM is N/(2*M). The 
PEs perform single radix-2 butterfly operations. The 
FFT algorithm consists of log2N stages; each stage 
consists of N/2 radix-2 butterfly operations. Figure 2 
shows an example for N=16 and M=2. The 
architecture is designed to exploit operation-level 
parallelism in each stage.  

 
3. Memory Contention Algorithm 
 

Memory contention occurs when a PE requests 
two accesses to a given memory at the same time. In 
the decimation in frequency FFT, memory contention 
does not occur in the early stages, it occurs from 
stage log2(M)+1  to the last stage. In the decimation 
in time FFT, the contention affects stage 0 to stage 

log2(N)-log2(M)-1. The 16-point decimation in 
frequency FFT shown on Figure 2 demonstrates 
memory contention. Stages 0 and 1 have no 
contention, but contention occurs in stages 2 and 3.  
In stage 2 the inputs for the top PE are x2(0) and 
x2(2), both of which reside in MEM 0. In stage 3 the 
inputs for the top PE are x3(0) and x3(1), both of 
which reside in MEM0. 
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Figure 1. Switch-based architecture 

 
 

  
Figure 2. 16-point DiF FFT 

 
3.1. Predicting Memory Contention 
 

Define the stage distance as the index delta of data 
feeding PEs in each stage. The stage distance for a 
16-point decimation in frequency FFT is 8 in stage 0, 
4 in stage 1, 2 in stage 2 and 1 in stage 3. In general, 
for an N-point decimation in frequency FFT, the 
stage distance for stage i is equal to N/2(i+1). Memory 
contention occurs when the stage distance falls in a 
single memory space. Since memory size is equal to 
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N/(2*M), memory contention occurs in stage i if the 
following condition is satisfied: 

 
N/2(i+1) ≤ N/(2M) 
i ≥ log2 (M) (2) 

 
A stage that satisfies condition (2) will be referred to 
as a hazard stage; the rest of the stages are “safe” 
stages. For instance, in Figure 2, stage 2 and stage 3 
are hazard stages. Define memory pair (i, j)t as 
memory location x(i) and x(j) for stage t. In stage 2, 
the following memory pairs are hazard pairs: (0, 2)2, 
(1, 3)2, (4, 6)2, (5, 7)2. Other pairs will be referred to 
as safe pairs, for instance (0, 4)1.  
 A pair (i, j)t could be a hazard pair if: 
1) t is a hazard stage 
2) The bit wise Exclusive-OR of addresses i and j is 

less than N/(2*M).  
For example, the address pair (5, 7)2 is a hazard pair 
since:  510 ⊕ 710 = 1012⊕ 1112 = 0102 < 4 
On the other hand, address pair (0, 4)1 is a safe pair 
because: 010 ⊕ 410 = 0002⊕ 1002 = 1002  
Furthermore, a stronger definition is proposed to 
determine hazard pairs. A pair (i, j)t is a hazard pair if 
and only if: 
1) t is a hazard stage 
2) The bit wise Exclusive-OR of addresses i and j is 

equal to the stage t distance.  
For example, the address pair (5, 7)2 is a hazard pair 
since:  
    Stage-2 distance = 210 
    510 ⊕ 710 = 1012⊕ 1112 = 0102 = Stage-2 distance 
On the other hand, address pair (3, 5)2 is a safe pair 
because: 
    310 ⊕ 510 = 0112⊕ 1012 = 1102 !=Stage-2 distance 
 
3.2. Memory Management Operations 

 
Let xi(t) and xj(t) be the i-th and j-th elements in 

stage t and i < j. Define the memory management 
operations as follows (see Figure 3): 
• Normal Operation: Input xi and xj are provided 

to the first and second inputs (a and b) of the PE. 
The results (c and d) are saved in xi and xj.  

• Shuffle Operation affects how PE results are 
saved back in memory. In shuffle operation, the 
results (c and d) are saved in xj and xi. 

• Swap Operation: The swap operation affects 
the order of PE inputs. In swap operation, xi is 
provided to b and xj is provided to a.  

 

If the algorithm detects a case when inputs are 
incorrect, the swap operation is performed. As shown 
on Figure 3, a PE operation can have both swap and 
shuffle memory operations at the same time. 
 
3.3. Algorithm 
 

The main idea of the pipeline algorithm is to 
identify hazard pairs in early stages and perform 
memory management operations to resolve the 
hazard. Because data is rearranged in memory, the 
algorithm has to track where data is. One idea to 
track the movement of data is to use a separate 
memory to store the data indexes (i.e., pointers). This 
approach provides a great flexibility in moving data 
in the memory. It also simplifies the reordering logic 
of the final stage hardware. The downside of this 
approach is it increases memory size. Also, it 
increases the time for loading the operands in the PE 
by one cycle to retrieve pointers from memory. 
Another (less flexible) solution is to move data in 
memory in a methodic way to simplify data tracking 
in the pipeline. This approach resolves hazards for 
next stage only.  

 

 

Figure 3. Memory Management Operations 

 

9



 
 

Figure 4. Contention-free 16-point FFT 
 

The algorithm can be summarized as follows. For 
each PE operation: 
• If data has been reversed in memory, the PE 

input is swapped. 
• If the present data pair will create a hazard in the 

next pipeline stage, the PE results are shuffled. 
As a result of reordering data in the pipeline, results 
from the last stage should be reordered. Figure 4 
shows the intermediate and final memory locations 
for contention free 16-point FFT. Compare the 
following observations to those made in Figure 2:  

• In Stage-2 the inputs for the top butterfly are 
x2(0) and x2(2). There is no contention since 
x2(0) and x2(2) reside in MEM 0 and MEM 1 
respectively. 

•  Similarly, in Stage-3 the inputs for the top 
butterfly are x3(0) and x3(1) which reside in 
MEM 0 and MEM 1 respectively. 

Table 1 summarizes the definition of the variables 
used in the algorithm pseudo code.  

Table 1. Variables Definition 
 

Name Definition 

N Number of  FFT points 
NoPE Number of PEs 

 
Below is a detailed pseudo code of the algorithm for 
swap/shuffle operations.  
 
// Preparation Step 
Number_O_Stages   = log2(N) 
Cycles_Per_Stage  = N/(2*NoPE)  

Memory_Size       = N/2(NoPE+1)    
Safe_Stage        = log2(NoPE) 
// Start main nester loops 
for Current_Stage=0 to (Number_O_Stages -1) 
 Group_Size = N/2(Current_Stage+1)    
 for Current_Stage_Cycle=0 to (Cycles_Per_Stage -1) 
  for Current_Cycle_Operation=0 to (NUMBER_OF_PE -1) 
   // Calculate Operation Indices  
   Horizontal_op_index = Cycles_Per_Stage *  
                         Current_Cycle_Operation 
                         + Current_Stage_Cycle 
   Vertical_op_index   = NUMBER_OF_PE * Current_Stage_Cycle 
                         + Current_Cycle_Operation  
   Current_Stage_Rev = Number_O_Stages - Current_Stage – 1 
   Current_Group     = floor(Horizontal_op_index/ 
                             2Current_Stage_Rev) 
   Current_Operation = Horizontal_op_index mod 2Current_Stage_Rev 
   // Calculate Memory Address    
   M0_addr = Current_Stage_Cycle 
   If Current_Stage <= Safe_Stage 
     M1_addr = M0_addr 
   Else 
     K = Safe_Stage +1 
     L = Current_Stage  
     M1_Addr = Reverse M0_Addr0 bits between K to L bits 
   End 
   // Calculate Memory Select 
   If Current_Stage <= Safe_Stage 
     Group_Offset = Current_Group * N /2Current_Stage 
     Group_Count  = Horizontal_op_index mod Group_Size 
     Memory_Count = floor (Group_Count / Memory_Size) 
     Offset       = Memory_Count * Memory_Size 
     M0_Select    = Offset + Group_Offset  
     M1_Select    = Offset + Group_Offset + Group_Size 
   Else 
     Memory_Count = Vertical_op_index mod NUMBER_OF_PE 
     Offset    = 2 * Memory_Count * Memory_Size 
     M0_Select = Offset; 
     M1_Select = Offset + 2 * Memory_SiZe 
   End 
   M0_data = Memory(Current_Stage, M0_Select0) [ M0_addr ]        
   M1_data = Memory(Current_Stage, M1_Select1) [ M0_addr ]        
 
   // Determine if swap operation is required 
   If  Current_Group is even   
       AND Current_Sage <= Safe_Stage 
     // Read data with no swap 
     M0_data = Memory(Current_Stage, M0_Select) [ M0_addr ]        
     M1_data = Memory(Current_Stage, M1_Select) [ M1_addr ]             
   Else 
     // Read Data and perform Swap 
     M1_data = Memory(Current_Stage, M0_Select) [ M0_addr ]        
     M0_data = Memory(Current_Stage, M1_Select) [ M1_addr ]        

 End 
 
 // Read Twiddle 
 ROM_SELECT  = Current_Cycle_Operation 
 ROM_Address = Current_Operation * 2Current_Stage 

   W   = ROM(Current_Stage, ROM_SELECT) [ROM_Address ] 
 

 // Enable PE to perform FFT butterfly operation 
 [Result1, Result0] =  
       PECurrent_Cycle_Operation(M0_data, M1_data, W); 

 
   // Perform shuffle operation 
   Shuffle_Bit = log2NUMBER_OF_FFT_POINTS  
                 - Current_Stage - 2 
   Shuffle_Flag = Horizontal_op_index [Shuffle_Bit] 
   If  Current_Stage >= Sage_Stage  AND  
     Shuffle_Flag == 1 
     // Shuffle ResultsShuffle = 1 
     Memory(Current_Stage+1, M0_Select) [ M0_addr ] = Result1       
     Memory(Current_Stage+1, M1_Select) [ M1_addr ] = Result0       
   Else 
     // No Shuffling  
     Memory(Current_Stage+1, M0_Select) [ M0_addr ] = Result0       
     Memory(Current_Stage+1, M1_Select) [ M1_addr ] = Result1       
   End 
  end // Current_Cycle_Operation 
 end // Current_Stage_Cycle loop 
end // Current_Stage loop 

 
4. Implementation of a 1024-Point FFT  
 

Table 2 summarizes the design specification of the 
FFT implementation.  The block diagram of the FFT 
engine is shown in Figure 5. Multiplexers are used to 
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route the input and output data to and from the 
butterflies. The two butterflies are used to perform 
the radix-2 decimation in frequency FFT butterfly 
operation. 

 
 Table 2. Design Specifications 

 

Item Details 

FFT Algorithm Radix-2, Decimation-in-Frequency 
N 1024 points 
Format Fixed-point (int.frac): 16.16 
Number of PEs 2 
Number of RAMs 4 
RAM size 256 
RAM word width 32-bit 
Number of ROMs 2 
ROM size 512 
ROM word width 32-bit 
Frequency 1.4GHz 

 
4.1. Placement and Route  
 

The FFT core was designed using Verilog-HDL 
and implemented using an automatic synthesize, 
place and route approach. The RAM/ROM memories 
were modeled as hard macros (which is the industry 
standard for implementing data arrays), the area 
occupied was estimated based on guidelines 
presented in [10], the timing models for the data-
arrays was generated using QTM methodology 
presented in [11], for write the data setup time for a 
typical D-flop in this library was used, while for read 
the RAM/ROM memories were given a full cycle to 
generate the data after latching the address in. The 
memories were assumed to be high performance 
memories and will be able to meet the intended 
timing if designed in similar fashion to [12] which 
presented a 65nm SRAM that runs at 3 GHz and [13] 
which presented a 65nm SRAM that ran above 4.0 
GHz.   A very high performance 65nm process was 
used for the implementation with standard cell library 
carefully designed for high speed applications. The 
routing was limited to metal layer-7. Table 3 shows 
post-synthesis cell count. Figure 6 shows the 
floorplan of the memory macros, and the standard 
cells used to implement the control, multiplexers and 
the processing elements. The bar graph on the left 
and bottom edges show the placement congestion 
distribution. Figure 7 shows the finished FFT core. 
The FFT core occupied an area of 451µm by 226µm, 
of which the memory macros occupy 43,359 µm2 
(42.5%) while the standard cells occupy 15,570 um2 
(15.3%) with a total utilization of ~58%.  

 
Table 3. Post Synthesis Cell Count 

 

Cell (x1-equiv) Number of Instances 

Inv 1737 
Xor 157 
Bufs 1629 
nand2 780 
nor2 430 
DFF 131 
Oai 425 
Aoi 229 
mux2 145 
256x32 RAM 4 
512x32 ROM 2 
Total 5663 

 
4.2. Timing  
 

The placed, routed and tapeout ready FFT core 
meets timing for setup and hold at 1.43 GHZ (~700ps 
period) using industry standard STA tools, an 
extracted and back-annotated netlist was analyzed. At 
this cycle speed, a 1024-point FFT will complete in 
(2 cycles for RAM read/write * 256 cycles to loop 
through all of the memories contents * 10 stages to 
generate the final FFT results) = 5120 cycles. At a 
700ps cycle time, this translates to 5120* 0.7 ns = 
3.584µs. If a dual-ported RAMs are used, or if a 
register file approach was used to realize the RAMs 
to achieve reading at the positive edge and writing at 
the negative edges  then the 1024-point FFT will take 
(1 cycle RAM read/write*256 cycles to loop through 
all of the memories contents * 10 stages) = 2560 
cycles. With a 700ps cycle time this translates to 
(2560* 0.7 ns) = 1.792µs. 
 

 

Figure 5. Block diagram the FFT engine 
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Figure 6 FFT core placement 

 
 

 
 

Figure 7. FFT core routing 
 
5. Conclusions 
 

We have presented a switch-based architecture to 
implemented a radix-2 decimation in frequency N-
point FFT engine. An algorithm to detect and resolve 
memory contentions has been described. We have 
demonstrated the architectural and algorithmic ideas 
in the 1024-point FFT implementation.   Future 
research can focus on reducing power consumption 
of the FFT engine and extending the work done in 
[2] and [18].  Moving data between PEs and 
memories consumes considerable switching energy 
due to the charging and discharging of long-buses 
and memory banks. Minimizing data movement 
using caches or registers should be examined. PE 
execution is also major power contributor. 
Techniques to reduce the size and number of PEs 
should be also examined. One idea is to study the 
effect of internally pipelining the PE to reduce PE 
power. 
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