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Abstract

This paper presents a tool for automatic generation of
transaction level models (TLMs) in SystemC for MPSoC de-
signs with custom communication platforms. The MPSoC
platform is captured as a graphical net-list of components,
busses and bridge elements. The application is captured
as C processes mapped to the platform components. Once
the platform is decided, a set of transaction level commu-
nication APIs is automatically generated for each applica-
tion C process. After the C code is input, an executable
SystemC TLM of the design is automatically generated us-
ing our tool. This TLM can be executed using standard
SystemC simulators for early functional verification of the
design. Although, several TLM styles and standards have
been proposed in the past, our approach differs in the fact
that the designers do not need to understand the underly-
ing SystemC code or TLM modeling style to verify that their
application executes on the selected platform. Another key
advantage of our tool is that the platform can be easily cus-
tomized for the application and a new TLM for that plat-
form can be automatically generated. The TLM can be used
to program the custom platform early in the design cycle
before the components are available. Our experimental re-
sults demonstrate that for large industrial applications such
as MP3 decoder and H.264, high-speed TLMs can be gen-
erated for several platforms in a few seconds.

1 Introduction

The rise in complexity, size and heterogeneity of mod-
ern embedded system designs has pushed modeling to new
abstraction levels above RTL. Transaction level modeling
using SystemC is emerging as a new paradigm for sys-
tem modeling. On the other hand, platform based design
[11] of multi processor SoCs (MPSoC) is being adapted to
combine the best features of top down and bottom up sys-
tem design. Although several SystemC modeling styles for
MPSoC have been proposed, no clear semantics for model-

ing objects and composition rules have emerged yet. This
makes automatic TLM generation difficult. Most surveys
point to usage of transaction level models for early sys-
tem verification and embedded SW development. There-
fore, SW developers who use TLM have to understand TL
modeling and SystemC semantics. In this paper, we pro-
pose a system development framework and TLM generation
tool that removes the need for SW developers to understand
either the platform communication architecture or to learn
new modeling languages like SystemC.

Figure 1. Design Flow

The complete design flow for our tool is shown in Figure
1. The inputs for our tool are the application C code and
the platform definition. The output is a TLM from which
the software, hardware and interfaces will be synthesized
to construct a Pin Cycle Accurate Model to implement in
a FPGA or ASIC. This paper will be centered around the
TLM generator.

The input platform to the generator is a high level net-
list of the system consisting of processing elements (PEs),
busses and bridges. The bridges interface between busses
to allow multi-hop communication. Each PE consists of 1
or more processes that can be accessed on the bus. The pro-
cesses themselves are described using a set of C files that
contain the functions implemented for that process. The
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output is a TL Model of the custom communication plat-
form. The design is the top level module consisting of sub-
modules for each PE, bridge and memory. Processes ex-
ecuting on the PE are modeled as threads inside PE mod-
ules. A generic bus channel (GBC) is used to model system
busses. A generic bridge module (GBM) models a bridge
between two busses. GBM allows for communication be-
tween processes/memories that are not connected to a com-
mon bus. Since, the semantics for GBC and GBM are well
defined, the TLM can be automatically derived from a set
of platform parameters.

In order to develop the C code, a standard set of APIs is
automatically generated for each process in each PE. These
APIs provide communication services for rendezvous com-
munication with other processes in the platform. Software
developers need only to use these APIs to construct the
TLM, so therefore, the C code developers do not have to un-
derstand the communication architecture or write any Sys-
temC code to verify that their code executes on the platform.

2 Related work

TLM has gained a lot of attention recently ever since it
was introduced [7] as part of high level SystemC [10] mod-
eling initiative. Several use models and design flows [3, 6]
have been presented centering around TLM. In [2, 13], the
authors present semantics of different TL models based on
timing granularity. Similarly, design optimization and eval-
uation has also been proposed using practical TLMs [9].
These approaches do not clearly separate computation from
communication. A generic bus architecture was defined in
[8], however, none of the above approaches address auto-
matic TLM generation or the designer burden in learning
new TLM styles and languages. There have been several
approaches to automatically generate executable SystemC
code from abstract descriptions. Modeling languages as
UML [1] and behavioral descriptions of systems in Sys-
temC [12] have been proposed. These approaches do not
address transaction level platform modeling without the
need to use another language. The closest work is in SpecC
TLM generation for design space exploration [14], which
still requires designers to understand complex channel mod-
eling in a non-standard SpecC language. One important
difference is that their modeling abstraction requires imple-
mentation decisions for synchronization to be already made.
Moreover, there is no discussion of modeling communica-
tion processes such as bridges and routers. The novelty and
utility of our approach lies in that we require only applica-
tion C code and provide a programming model that is ag-
nostic of communication architecture.

Comm. API
prototypes

for p

Application C code for p

File1.c FileN.c

include

Platform Model

Comm. API functions

send_p_p1() {….}
recv_p_p1() {….}

GBC definition

PE module

GBC_INTERFACE bus;
SC_THREAD(p);

p->send_p_p1() {….}
p->recv_p_p1() {….}

call

implement

Executable TLM

Figure 2. Code organization for TLM

3 Platform modeling

Each object in the platform is modeled according to a
well defined SystemC template. Busses use the Generic Bus
Channel (GBC) template, bridges use Generic Bridge Mod-
ule (GBM) template, processes are sc threads and PEs are
sc modules. Figure 2 shows the code organization for the
executable TLM.

The design is modeled as a top level sc module which
instantiates all the GBCs, GBMs and PEs as captured in
the GUI. We focus here on one process called p. This pro-
cess will access its assigned PE’s port by using the com-
munication APIs. Each PE is declared also as a sc module
which contains one or more sc threads representing the C
processes of the PE. The communication APIs exported
to the application C code are global functions that call
the GBC access methods inside the corresponding process’
sc thread. For any process to send or receive data to any
other process, a clear semantic is defined, which is inde-
pendent of the platform defined by the user in the graphical
capture. These should be used in the original C code. No
further modification to these files is needed after that. The
only limitation in the C code is that even if different func-
tions are mapped into different processes in different PEs,
they should have different names.

The communication API generated depends on the inter-
process communication specification in the platform. A
GBC send and receive call will be generated for each pair
of communicating processes. These functions will access
the corresponding GBC send/receive functions, even if the
destination process is not located in the same GBC as the
source process. In this case, the function will route the data
through the necessary GBCs and GBMs to arrive at the des-
tination process. All these steps are generated automati-
cally, without the user needing to do anything else except
calling the communication APIs.

3.1 Generic bus channel

GBC is a channel model that abstracts the system bus
as a single unit of communication. GBC provides the
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basic communication services of synchronization, arbitra-
tion and data transfer that are part of a transaction. At
the transaction level, we do not distinguish between dif-
ferent bus protocols. GBC provides 5 bus communication
functions namely: Send/Recv for synchronized communi-
cation, Read/Write for memory access and MemoryService
for memory control.

Synchronization is required for two processes to ex-
change data reliably. A sender process must wait until the
receiver process is ready, and vice versa. Synchronization
between two processes takes place by one process setting
the flag and the other process checking and resetting the
flag. We will refer to the process setting the flag as the ini-
tiator and the process resetting the flag as resetter.

Since a bus is a shared resource, multiple transactions
attempted at the same time must be ordered sequentially.
This arbitration is modeled in the GBC using the SystemC
sc mutex class. to reflect such a sequential ordering of trans-
actions. After arbitration, the resetter process sets Address
which is read by the initiator process.

3.2 Generic bridge module

The GBM models the bridge connected to two busses.
Its purpose is to facilitate multi-hop transactions, where one
process sends data to another process that is not connected
directly to the sender via a GBC. The basic functionality of
the GBM is to simply receive data from the sender process,
store it locally and send it to the receiver process once the
latter becomes ready. The receiver can be a processing ele-
ment or another GBM in the case of multi-hop transactions.
There are three types of objects used to model the GBC as
described in this section.

max_pkt_size

F_Tx()

MayIRead()
MayIWrite()

Read()
Write()

GetNextReq()
Clear()

Requests1 FIFO-1

IO1

max_pkt_size

F_Tx()

GetNextReq()
Clear()

Requests2

IO2

FIFO-N

To
GBC1

To
GBC2

Figure 3. TLM for bridge module

3.2.1 FIFO channels

The data in transit via the GBM is stored locally in FIFO
channels. The number of such channels is equal to the to-
tal number of communication paths through the GBM. The
number of such paths can be easily derived from the plat-
form specification. The size of each FIFO can be defined
in GUI while parameterizing the bridge. Each FIFO sup-
ports four functions as follows: MayIWrite checks if space

is available in FIFO; MayIRead checks if data is present
in FIFO; BufferWrite copies the incoming data to the FIFO
buffer and updates the tail pointer; BufferRead copies data
from the FIFO buffer to the output and updates the head
pointer.

3.2.2 Request buffers

In general, before any data is sent/received to/from the
GBM, a request must be made such that the GBM interface
may check if the internal FIFOs can accomodate the data
or supply it. Such a request may be included in the packet
itself, but if the packet cannot fit, additional logic is needed
in the bridge to reject the packet and in the process to check
for rejection and resend it. For simplicity, we will only con-
sider the scenario where the PE writes the request, followed
by synchronization and data transfer. In case of multiple
competing processes, the requests from different processes
are arbitrated by the GBM and the communication with the
successful process is initiated.

There are two request buffers in the GBM, one for each
bus interface. The number of words per request buffer is
equal to the number of communication paths through the
bridge. The request buffer is modeled as any other mem-
ory module in a PE and thus has an address range on the
bus. Each word in the request buffer has a unique bus ad-
dress. The requesting process writes the number of bytes it
expects to read/write into the communication path’s corre-
sponding request buffer. The request buffer is a module that
supports four functions: GetNextReady checks the request
words in the buffer in a round-robin fashion. For the chosen,
request, it checks if the corresponding FIFO has enough
data/space to complete the transaction of requested size. If
yes, it returns the request ID and path, else it checks the
next pending request. Clear removes the request from the
buffer. WriteMem writes to the other request buffer in the
same GBM in the case of multi-hop transactions. Write this
function performs the write to the request buffer itself. It is
exposed to the other Request Buffer in the GBM (namely
to its WriteMem function). In the case of multi-hop trans-
actions the GetNextReady function will call WriteMem in
order to write to the next Request Buffer (if the data route
continues in the same GBM).

3.2.3 IO module

The IO module is the interface function of the GBM that
talks to other processes and GBMs on the bus. It consists
of a local buffer of the size of maximum data packet and
F Tx. It starts by calling the GetNextReady function in the
request buffer. Then, for the selected sender or receiver pro-
cess, it calls the GBC receive or send function respectively.
The data received from sender is written to the correspond-
ing FIFO. The data to be sent to the receiver is first read
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from the corresponding FIFO before calling the GBM send
function. Once the requested transaction is completed, the
request removed by calling the Clear function in the request
buffer module. In the case of multi-hop transactions, the IO
module will write the send request to the next GBM in the
packet route, and proceed to send it.

4 Automatic TLM generation

In this section, we present the algorithms for generating
the TLM described in Section 3 from the platform speci-
fication. For brevity, we will describe generation of GBC,
GBM and top level module only.

Algorithm 1 Generate GBC
1: //Generate GBC flags and events
2: gen:“sc mutex arbiter;”
3: gen:“int BusAddr; sc event AddSet;”
4: Pbus = Set of proc.s on GBC
5: for all p1, p2 ∈ Pbus do
6: Declare synchronization flags and sc events
7: //Code gen. for synchronization
8: gen:“if (sender==p1 && receiver==p2){”
9: if p1.type = INITIATOR,p2.type = RESETTER

then
10: Set synchronization flag and notify sc event
11: Wait for AddrSet event if BusAddress not defined
12: else
13: Wait for event if synchronization flag is not set
14: Arbitration and Bus Address set
15: end if
16: end for

4.1 GBC code generation

The GBC is modeled as a SystemC channel class as de-
scribed in Section 3.2. For each bus in the platform, a
unique GBC channel implementation is generated. Algo-
rithm 4 shows the method for creation of the GBC inter-
nal structure. Here, we present only the pseudo-code for
send function generation due to lack of space. The receive
function is similar to the send function, the read and write
functions do not carry the code for synchronization and the
memory service function simply executes and endless loop
checking for bus address.

We start by creating the arbiter, which is an instantiation
of the sc mutex module, and create the variable and event
for addressing (lines 2-4). Then, for all the communicating
processes defined, we select processes that are directly con-
nected to this GBC and include them in the set Pbus. The
interface processes of the GBMs connected to this bus are
also included in Pbus. The synchronization and addressing

code is generated for all pairs of processes in Pbus (Line 5).
We create the synchronization flags and events as described
in Section 3.1 for all pairs of processes in Pbus (Line 6). If
the sender is an initiator, then code is generated to set the
flag and notify the synchronization event (Line 10). Other-
wise, we generate code to wait until the flag is set (Lines
11). The resetter is eventually responsible for acquiring the
bus and setting the address. The corresponding code for
locking the arbiter mutex and setting the bus address is gen-
erated if the sender is resetter (Line 13). If the sender is
initiator, code is generated to snoop for the right address for
this pair of communicating processes (Line 14). Finally, af-
ter the addressing, data transfer is performed by setting the
local channel data pointer (DataPtr) to the pointer (data ptr
passed in the send function call, then code is generated to
check if the sender is the resetter, and release the bus by
unlocking the arbiter mutex.

Algorithm 2 Generate GBM: Address labels and GetNex-
tReady()

1: //Bridge addresses generation
2: for each {p1, p2, address} ∈ path do
3: if bridge ∈ path then
4: //Bus Addresses generation using p1 and p2
5: end if
6: end for
7: //Request:GetNextReady()
8: count = 0
9: for each {src, dest} ∈ path do

10: if bridge ∈ path then
11: gen:“if (RequestBuffer[count] ) {”
12: Set source,destination,size and transfer type
13: gen:“ if(fifo →MayIWrite(*src,*dest,*size)==Yes)”
14: if dest is not local to this bus then
15: gen:“WriteMem(*src,*dest,*size,*TransferType);”
16: end if
17: gen:“ return true; }”
18: end if
19: count + +
20: end for

4.2 GBM code generation

The Generic Bridge Module generated by our tool con-
sists of two sets of modules, one set for each GBC. Each
set consists of a FIFO channel, a Request buffer and an IO
module as described in Section 3.2. Shown in the algorithm
4.1 is the generation of the GetNextReady function of the
Request buffer.

The bridge addresses are uniquely named using the
source, destination and address (p1,p2) in each path (Lines
2-6). In the request buffer, the function GetNextReady()
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checks if any of the request addresses has been modified,
and sets the variables {src, dest, size, transfer type} accord-
ingly for the transfer (Lines 9-20). The tool checks each
path, and if the current bridge is part of it (Line 10), uses
its source and destination (src,dest) to generate the proper
process IDs for the pointer assignment (Line 12) , and the
buffer permission to read or write(Line 13). In order to de-
termine which fifo to read and write, each IO module con-
nection to the busses is checked along with the busses in-
formation in each route. This determines which process is
assigned to the pointers src and dest. In the same iteration
loop, the function Clear described in Section 3.2.2 can be
generated. The other modules in the bridge are generated
iterating through the FIFOs, and generating the functions
MayIWrite, MayIRead, BufferWrite, BufferRead for each of
them.

Algorithm 3 Generate Top Module

1: for each {PE, bus, bridge ∈ design} do
2: Instantiate process in PE
3: end for
4: //Connections inside the constructor
5: for each {PE ∈ design} do
6: for each {proc ∈ PE} do
7: for each {port ∈ proc} do
8: for each {conn ∈ design} do
9: if conn == PEname then

10: gen:“proc inst → port(∗bus inst);”
11: end if
12: end for
13: end for
14: end for
15: end for

4.3 Top module code generation

After the GBM and GBC algorithms generate the busses
and the bridges, Algorithm 4.2 shows the final class gener-
ation, where the process, PE, bus and bridge instantiations
and connections are made. Instantiations are made for each
PE, bus and bridge. Once inside the constructor (Lines 5-
15) , a connection is made between its port and the corre-
sponding bus (Line 10), by checking connections (conn) for
each PE (Line 9).

5 Experimental Results

The algorithms shown in Section 4 were implemented in
a C++ tool for automatic generation of TLMs from appli-
cation C code and platform specification. The input to the
tool was a high level net-list of the system, with pointers to

C code. The output is a complete set of executable SystemC
files (PEs, GBCs and GBMs).

We selected two large industrial applications namely a
MP3 decoder and a H.264 fixed point decoder to test our au-
tomatic TLM generation tool. All tests were performed on
an Pentium 4, 3 GHz, 1 GB RAM machine running Linux
kernel 2.6. The MP3 decoder reference C code[5] consisted
of 9463 lines of C code. The simulation testbench for MP3
was a input file of 138 KB size. The original reference C
code for H.264 decoder[4] consisted of simplified decoder
with 3419 lines of C code and its simulation was performed
using a 27 KB clip of frame size 352 by 288 pixels. Sev-
eral platforms with different communication architectures,
as shown in Figures 4 and 5, were used to generate the
TLMs.

Figure 4. Platforms used for MP3 decoder

Figure 5. Platforms used for H264 decoder

Table 1 shows the automatic generation results for differ-
ent platforms for MP3 and H.264 TLMs. The first column
indicates the platform configuration. The second column
shows the lines of SystemC code that were generated by the
tool. The third column demonstrates the productivity gain
of our tool by showing the estimated time in person-hrs for
doing this SystemC coding manually. We use an optimistic
figure of 20 lines of code per person-hr. The fourth column
shows the generation time in seconds for TLM to be cre-
ated for each platform. The fifth column shows the model
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Table 1. TLM generation time and quality for different MPSoC designs.
Platform Generated Manual Generation SimulationApplication

Configuration SC LOC est. time time time
reference C - - - 1.29s
Platform 1 2095 104 hrs 0.633s 3.268s

MP3 Platform 2 2894 144 hrs 0.661s 5.519s
Platform 3 3148 157 hrs 0.645s 5.764s
Platform 4 3653 183 hrs 0.741s 7.424s

reference C - - - 2.027s
Platform 5 1722 86 hrs 0.245s 7.542s

H.264 Platform 6 2796 140 hrs 0.244s 9.935s
Platform 7 3853 192 hrs 0.267s 13.326s
Platform 8 4910 245 hrs 0.260s 15.415s

simulation time on the testbench described above for each
application. We can see from these results that the tool gen-
erates thousands of lines of code in a fraction of a second.
The manual coding time would cost numerous hours of pre-
cious designer time that we can save using automatic TLM
generation. The results shows that the quality of our TLMs
is very high since simulation time is of the same order as
the reference C simulation.

6 Conclusions and Future Work

In this paper, we presented a methodology and tool for
automatically generating TLMs from graphical capture of
platform and application C code. The key differentiation
is in the separation of not only computation and communi-
cation, but also between application and platform. In other
words, with our tool, there is no need for designers to under-
stand SystemC modeling, event semantics etc. which makes
it very attractive for SW developers. Currently we are de-
veloping synthesis semantics for GBC and GBM to provide
system synthesis from automatically generated TLMs. In
the future, we plan automatic generation of TLMs for ap-
plication specific NoCs.
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