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Abstract

As dual-core and quad-core processors arrive in the
marketplace, the momentum behind CMP architectures
continues to grow strong. As more and more cores/threads
are placed on-die, the pressure on the memory subsystem is
rapidly increasing. To address this issue, we explore DRAM
cache architectures for CMP platforms. In this paper, we
investigate the impact of introducing a low latency, large
capacity and high bandwidth DRAM-based cache between
the last level SRAM cache and memory subsystem. We first
show the potential benefits of large DRAM caches for key
commercial server workloads. As the primary hurdle to
achieving these benefits with DRAM caches is the tag space
overheads associated with them, we identify the most effi-
cient DRAM cache organization and investigate various op-
tions. Our results show that the combination of 8-bit partial
tags and 2-way sectoring achieves the highest performance
(20% to 70%) with the lowest tag space (�25%) overhead.

1 Introduction

The momentum behind CMP architectures [8] is pushing
architects and designers to consider integrating more and
more cores on the die. Within this decade, we expect that
moderate to large-scale single-socket CMP platforms with
8 to 32 cores will be commonplace. Intel’s Tera-scale re-
search initiative [9] and Sun’s Niagara 2 [6] are excellent
examples of this trend. Such platforms are very suitable for
throughput computing [4] and therefore are a highly attrac-
tive option for commercial servers.

As more cores are integrated on-die, the performance
and scalability of CMP architectures are even more heavily
dependent on the memory subsystem. It is well understood
that the memory latency and bandwidth is improving at a
much slower pace than that of CPU. One approach to solv-
ing this problem is to develop memory technologies such as
fully buffered DIMMs (FBD) [5][12] that reduce pin count
and offer more memory channels. Another approach is to
add more cache space. Cached DRAM [20] integrates an
SRAM cache in the DRAM memory to exploit the locality
in memory accesses and thus reduces the miss penalty. An-

other potential solution is to add an off-chip DRAM cache
in between the last-level processor cache and the DRAM
memory. Using DRAM allows for a much larger capacity
but at a somewhat longer latency. Previous studies [10][21]
and our own internal analysis has shown that DRAM-based
caches (using Multi-Chip Package or 3D-stacking technol-
ogy) can be designed to provide twice the bandwidth of
main memory at about one third of the memory latency. Our
goal is to take advantage of this potential for CMP-based
server platforms. To our knowledge, this is the first study
that explores the potential of DRAM cache and evaluates
the architectural options for CMP-based server platforms in
detail.

To determine the potential of large DRAM caches, the
first step is to evaluate the miss rate benefits that it pro-
vides. We start by showing this potential for five differ-
ent server workload scenarios. The first four scenarios are
based on four server applications (TPC-C, SPECjappserver,
SPECjbb and SAP SD/2T) running individually on an 8-
core single-socket server. The final scenario is based on a
virtualized environment running all four of the above server
workloads simultaneously on a 32-core single-socket server
platform. Since server consolidation [19] is a growing us-
age model, we felt that large-scale CMP server platforms
are best evaluated using these virtualized scenarios. We
show the miss rate benefits of large DRAM caches can
translate into significant reduction in terms of average mem-
ory latency and consumed memory bandwidth.

The next step is to determine a performance and area ef-
ficient design option. A primary hurdle to determining a
DRAM cache option is the large tag space overhead that
needs to be accommodated. Placing the tags in the off-die
DRAM cache implies that the tags need to be accessed be-
fore the data and therefore requires almost twice the latency.
On the other hand, placing the tags on the die implies that it
displaces the last-level cache to stay within the same area.
To understand the implications of tag space overhead and
identify the most suitable DRAM cache implementation, we
study five DRAM cache architecture options: 1) DRAM
cache with off-die tag, 2) DRAM cache with full on-die
tags, 3) sectored DRAM cache with on-die tag, 4) DRAM
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cache with partial on-die tags and 5) sectored DRAM cache
with partial on-die tags. We show that the use of sectoring
and partial tags can save on-die tag space but have differ-
ent trade-offs in terms of performance We also show that
combination of sectoring and partial tags provides the max-
imum performance gain at minimized tag space overhead.
Compared to previous studies [21], we perform a detailed
evaluation of various design options for a DRAM cache, es-
pecially the design tradeoffs to reducing on-die tag space.

The rest of this paper is organized as follows. Section
2 motivates the need for DRAM caches and discusses the
considerations and trade-offs. In Section 3, we present five
DRAM cache design options and discuss their implications
on implementation. Section 4 evaluates the DRAM cache
design options based on the five workload scenarios men-
tioned above. Section 5 concludes the paper with a direction
for future work.

2 Memory Overheads and DRAM Cache

In this section, we discuss memory-related overheads
in server workloads and motivate DRAM caches for CMP
server platforms. We also show the potential benefits of the
DRAM cache along with the considerations and trade-offs.

2.1 Memory Overheads in CMP Platforms

The memory wall problem [11] has been around for a
long time. This problem is exacerbated in CMP platforms
as more hardware cores or threads are actively executing
with a relatively smaller amount of cache space available
per thread. We collected data on memory stall times when
running key commercial server workloads in a quad-core
CMP platform. It shows that memory overheads are sig-
nificant, which varies from 45% to 70% depending on the
workload. This motivates the need for addressing memory
stall time through better memory hierarchies or better mem-
ory technologies.

2.2 DRAM Caches for CMP Servers

Researchers have studied (and in some cases even im-
plemented) large SRAM caches [13][18][20] and DRAM
caches [10][21] in the past. The context has either been to
introduce external large capacity caches in node controllers
or chipsets in single-core processors. Recently, however,
the potential of Multi-Chip Package and 3D stacking [3] has
opened up the possibility of embedding the DRAM cache
within the package. In this paper, our focus is to evaluate
the performance potential of a DRAM cache and the possi-
ble design options when integrating the DRAM cache into
the package of a CMP-based server processor.

2.2.1 Cache Size for BW/Latency Mitigation

Figure 1 illustrates a typical cache/memory hierarchy and
the potential of introducing a DRAM cache layer between

the last-level cache and main memory. To highlight the po-
tential of DRAM caches, we studied DRAM miss rates for
realistic server workloads. Using long hardware bus traces
of well known server benchmarks (TPC-C, SPECjbb2005,
SAP SD/2T and SPECjappserver), we conducted simula-
tions with 8 cores, a shared 8M L3 cache and a 64M DRAM
(L4) cache. We also studied a virtualized scenario where all
four workloads were run simultaneously to mimic consoli-
dation on a 32-core CMP server with a shared 8M L3 and a
64M DRAM (L4) cache. More simulation details are pro-
vided later in Section 4.
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Figure 1. Introducing a DRAM cache in a typ-
ical cache/memory hierarchy

Figure 2 shows the DRAM cache hit rate for the five
server workloads. The hit rate benefits are quite significant,
ranging from around 50% to 80%. These DRAM cache hits
will have significantly lower latency since the DRAM cache
access latency is expected to be much lower than the mem-
ory latency. Our internal analysis of embedding DRAM
within the package (not provided in this paper due to pro-
prietary reasons) indicates that the DRAM cache access la-
tency can be lower than one-third of the DRAM memory
latency in most server configurations (even with integrated
memory controllers). In addition, the DRAM cache hit
rate also points to a significant reduction in main memory
bandwidth and thereby much lower queuing delays for main
memory accesses. Figure 3 shows the estimated reduction
in average memory latency as well as main memory band-
width requirement. Note that our choice of a 64MB DRAM
cache size was due to simulation limitations to ensure suf-
ficient warm-up. However, the potential of DRAM caches
is even more significant than shown because it is feasible to
accommodate much larger DRAM caches (up to 256MB).

2.2.2 Key Consideration - Tag Overheads

As the cache become large, so does the tag space. A pri-
mary design consideration for DRAM caches is the tag size
and its implications on location and organization. Assum-
ing that the physical memory space is 16TB (44 bits) and
DRAM cache is 16-way, the required tag space for 64 to
256MB caches are illustrated in Figure 4. Take an example
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Figure 2. 64M DRAM cache hit
rate (over 8M LLC)
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Figure 3. Potential memory la-
tency/bandwidth benefits
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Figure 4. Tag space overhead
for DRAM caches

of a 256MB cache with 64B lines. The tag space is about
11MB. The traditional approach is to place the tags along
with the data. However, since the DRAM cache is off-die,
any access to the DRAM cache will suffer the overhead of
looking up the 16 tags and determining the hit/miss. The
alternative is to place the tags on-die. However, this implies
that 11MB of space is required on the main die. This ei-
ther requires that the die area increases or that it replaces
the last-level cache space. Both of these approaches have
unacceptable impact on cost and performance respectively.
Other alternatives include employing large line sizes or di-
rect mapped caches. Figure 4 shows that increase in line
size can reduce the tag space linearly. However, it also has
a direct implication on miss rate and memory bandwidth. In
the rest of this paper, we will present various design options
and do an in-depth evaluation.

3 DRAM Cache Architecture Options

In this section, we introduce the DRAM architec-
ture options, describe their operation and discuss the key
considerations/trade-offs for each one.

3.1 DRAM Cache with Off-Die Tags

A simplistic option for DRAM caches (DRAM$) is to
place tags off-die along with the data. In this case, the ap-
propriate DRAM cache organization depends on its set as-
sociativity. For a cache with n-way set associativity (n �
1), it is desired that all tags for each set are placed together
within one block (shown in Figure 5a). This allows the tags
within a set to be read in one data transfer for hit/miss deter-
mination. If there is a hit found, the second request is sent
to the DRAM data cache to retrieve the data. Otherwise the
request is sent to memory. The miss latency can be reduced
by sending the request to memory at the same time that it
is sent to the DRAM cache. However, the ability to cancel
the request if a hit is found in the DRAM cache is critical.
If the data is fetched before the DRAM hit is detected, then
the primary purpose of reducing memory bandwidth is de-
feated. In any case, this organization requires two block
transfers (tags and data) for a hit, and one data transfer

(tags) for a miss. To avoid multiple data transfers for hits,
it is possible to build a direct-mapped DRAM cache, where
the tag is placed along with the data block. This allows the
tag and the data to be read at the same time. If the tag com-
parison results in a hit, the data is available immediately.
However a direct-mapped cache usually has much higher
miss rate than set-associativity cache. To quantify this, we
compared the miss rates of direct-mapped to set-associative
DRAM caches. Our results using a 64MB cache in an 8-
core CMP show that 8 or 16-way caches provide a miss rate
reduction of 20 to 40% over direct-mapped caches. In ad-
dition, as cores continue to increase on the die, we expect
that this benefit will increase due to more conflict misses.
As a result, we consider set-associative (8-way or 16-way)
DRAM caches for this study.

3.2 DRAM Cache with On-Die Tags

As off-die tag placement incurs higher DRAM cache ac-
cess latency and requires higher bandwidth, we can move all
of the tags on-die (as shown in Figure 5b). When a mem-
ory request is sent to the last level cache (LLC), it is also
sent to the on-die tags of the DRAM cache. If a miss occurs
in last-level cache and a hit is found in DRAM tags, the
request is sent to the DRAM cache for retrieving the data.
Otherwise the request is sent to memory, and the data from
memory is sent to DRAM cache and last-level cache simul-
taneously. Therefore, only one data transfer is required for
DRAM cache hits. The drawback of this approach is that
additional die area is required to accommodate the DRAM
tags on-die. If die area increase cannot be allowed, which
is the typical case, then the DRAM tags will need to be ac-
commodated by reducing the size for last-level cache.

3.3 Sectored DRAM Cache with On-Die Tags

One way to reduce the on-die tag space is to use large
cache line sizes. While the use of large line sizes can ben-
efit from spatial locality, it also comes at the expense of
consuming more memory traffic and a potential increase in
cache access latency. For systems with multiple sockets,
large line sizes also increases the possibility of false sharing.
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Figure 5. Potential DRAM cache design/organization options: (a) off-die tag, (b) on-die tag, (c) on-die
tag sectored cache, (d) on-die partial tag, off-die full tag

A sectored cache [1] is a well-known alternative to building
caches with large lines. A sectored cache essentially uses
the concept of sub-blocks where each sub-block consists of
a small cache line along with its state and the overall block
is made up of these sub-blocks along with the block address.
A sectored DRAM cache will support on-die tag space sim-
ilar to a large-lined cache while not incurring as much traf-
fic. Therefore we evaluate the performance effectiveness of
a sectored DRAM cache, as shown in Figure 5c, and com-
pare it to the other alternatives. Since sectored cache usually
introduces a higher miss rate than non-sectored cache, it is
straightforward to use sector prefetching, which prefetches
neighboring sub-blocks when a miss occurs. Therefore, we
also investigate the use of sector prefetching. Other per-
feching techniques will be evaluated in future work.

3.4 DRAM Cache with On-Die Partial Tags

In order to reduce the on-die tag space and also maintain
a low miss rate, we propose the use of on-die partial tag di-
rectories for DRAM caches. As shown in Figure 5d, the full
tag directory (FTD) is placed off-die along with the data so
that they can be read in one transfer. Each tag entry in the
partial tag directory (PTD) contains the m least significant
bits from the corresponding tag entry in FTD. When a L2
miss occurs, the request is sent to both the LLC (L3) and
the PTD. If it results in an LLC miss and a PTD miss, the
request is sent to memory. If it turns out to be PTD hit,
the request is sent to the DRAM cache because it needs to
check the full tag in the FTD to ensure that it is a true hit.
If the full tag(s) comparison results in a match, then a true
hit is determined and the data is returned to the core. If it
results in a mismatch (i.e. a false PTD hit), the request has
to be serviced in the main memory. It should be noted that
a partial tag lookup (in the PTD) could result in multiple

matches when a hit occurs. This happens when two lines
have the same partial tag. Since multiple matches make the
operation much more complex (requiring multiple full tags
to be retrieved from the FTD), we only allow a single match
by restricting the number of unique partial tags in the PTD
to 1. This restriction is simply implemented in the replace-
ment policy such that an allocation of a new line that maps
to an existing partial tag in the set chooses the partial tag as
the victim and replaces it. We have verified that this makes
a negligible difference in the miss rate and therefore is an
attractive approach.

The performance of partial tags depends on the number
of bits chosen from the full tag. This number is chosen such
that it can meet the following requirements: 1) it can pro-
vide a reasonable space reduction from the full tag; 2) there
is a high probability that a true hit occurs. The probability
of a true hit depends on the probability of finding a unique
partial tag within a set. We statistically estimated the prob-
ability of finding a unique tag in an n-way set associative
cache with m partial bits. For this analysis, we assumed
that the tag values are randomly distributed within the set.
This assumption is true as long as the workload has a uni-
formly random distribution of access across the main mem-
ory space (commercial server workloads like TPC-C exhibit
this behavior). Since the primary requirement for a unique
partial tag is that each of the m bits is different amongst the
n ways in the set, the probability of this occurrence is

�� � ��� � ������������� (1)

Table 1 lists the probability as we increase m from 4-bit
to 10-bit when n is set as 4 and 16 respectively. We can
see that when m=8, the probability to find a unique partial
tag is 94% for a 16-way cache, and can be as high as 98%
for a 4-way cache. As expected, the probability increases as
we increase m. Note that 8-bit partial tags provide almost a
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60% space reduction for a 64MB cache and 16TB memory
space (22-bit full tags).

Table 1. Prob. of unique partial tag in a set
PTD bits Associativity
M N = 16 N = 4
4 0.380 0.824
5 0.621 0.909
6 0.790 0.954
7 0.890 0.977
8 0.943 0.988
9 0.971 0.994
10 0.985 0.997

To save more on-die space, another option is to imple-
ment the on-die partial tags for sectored DRAM caches.
This is expected to combine the tag space reduction ben-
efits of both approaches and minimize the negative effects
of sectoring. We will evaluate the benefits of this hybrid
approach in the next section.

3.5 Inclusion Property

One aspect that is also important is to determine whether
the DRAM cache is inclusive [2], non-inclusive or exclusive
with respect to the last-level cache. For the on-die cache
hierarchy that consists of L1, L2 and the shared L3, we
employ an inclusive approach. For the DRAM cache how-
ever, we chose to make it non-inclusive relative to the on-die
cache hierarchy. This avoids the need for back-invalidation
messages from the DRAM cache to the L3. The downside
with non-inclusion is that the DRAM cache has to forward
all DRAM cache snoops to the L3. However, since we ex-
pect that DRAM tags will likely be collocated with the last-
level cache on-die, this is not an issue at all.

4 DRAM Cache Evaluation

In this section, we first describe the simulation frame-
work and the workloads that we use to evaluate the DRAM
cache performance, and then to analyze the experiment re-
sults. The major metrics that we focus on are IPC (Instruc-
tions per Cycle) for performance, and MPI (Misses per In-
struction) for cache behavior.

4.1 Architecture Configuration

The simulated CMP architecture is illustrated in Figure
6. It consists of 8 cores operating at a frequency of 4GHz.
The L2 cache is 512KB and is shared by two cores. L3
cache is 8MB by default (varied depending on DRAM tag
placement optionsis) and is shared by all cores. Between
the L2 and L3, there is an on-die interconnect that mimics
a bi-directional ring. DRAM cache size is fixed at 64MB.
Both DRAM cache and memory are off the main processor
die. L2 and L3 are inclusive whereas L3 and DRAM cache

are non-inclusive. The detailed experiment parameters are
listed in Table 2.
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Figure 6. Simulation configuration

Table 2. CMP configurations and parameters
Parameters Values
Core 4GHz, In-order
L2 cache 512K bytes, 8-way, 64-byte block, 18 cycles

hit time
L3 cache 8M bytes, 16-way, 64-byte block, 30 cycles hit

time
Interconnect BW 512GB/s
DRAM cache 64M bytes, 16-way, 64-byte block, 110 cycles

access time, peak bandwidth at 64GB/s
Memory 400 cycles access time, peak bandwidth at

16GB/s

4.2 Workloads and Traces

We chose four key commercial server workloads: TPCC,
SAP, SPECjbb2005 and SPECjappserver2004. TPC-C [17]
is an online-transaction processing benchmark that simu-
lates a complete computing environment where a popula-
tion of users executes transactions against a database. The
SAP SD 2-tier benchmark [14] is a sales and distribution
benchmark to represent enterprise resource planning (ERP)
transactions. SPECjbb2005 [16] is a Java-based server
benchmark that models a warehouse company with ware-
houses that serve a number of districts (much like TPC-C).
SPECjappserver2004 [15] is a J2EE 1.3 application server.
It is a multi-tier e-commerce benchmark that emulates an
automobile manufacturing company and its associated deal-
erships.

For all of these workloads, we collected long bus traces
on Intel Xeon MP platform with 8 hardware threads run-
ning simultaneously with the last-level cache disabled. The
traces include both instruction and data accesses, synchro-
nization and inter-thread dependencies if there is any. They
were replayed in the 8-core and 32-core simulator with
different cache hierarchies and memory configurations as
shown in Table 2.

4.3 Results and Analysis

In this section, we present the evaluation of the five
DRAM cache options and its variants. We start by looking
at off-die DRAM cache performance.
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4.3.1 Off-die DRAM$ Performance

Figure 7 shows the performance of five workloads when we
add an 64MB DRAM cache. It should be noted that this in-
cludes the memory access overheads of accessing both tags
and data off-die. As the DRAM cache tags are placed off-
die, the LLC size is not affected and fixed at 8M. The hit
rate of the DRAM cache is also shown in the figure. We
can see that all the four workloads get improvement from
6.1% to 18.6%. For TPCC, its hit rate is about 78%, which
leads to a 12.7% increase in its throughput. SPECjbb is
improved by 18.7%, although its hit rate is smaller than
that of TPCC. This is because SPECjbb is more memory
intensive, thus requires more memory bandwidth. Adding a
DRAM cache reduces not only the average memory access
latency, but also the memory bandwidth requirement. The
hit rate for SAP and SPECjAppServer is 55.1% and 48.1%,
and their IPC is improved by 6.1% and 9.7% respectively.
When four servers are running simultaneously, the use of a
DRAM cache can reduce the memory bandwidth require-
ment significantly and increase the throughput by 69.2%.
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Figure 7. Off-Die DRAM cache performance

4.3.2 On-die Sectored DRAM Cache Performance

As we described in the previous section, placing tags on-
die incurs a large space overhead. Therefore we consider
sectored DRAM cache, which has smaller tag space. Given
the same die area, the LLC size is reduced as we add on-
die tags for DRAM cache. We ensure that the total size
of LLC and on-die tag for DRAM cache is fixed at 8MB.
Table 3 lists the on-die tag space for DRAM cache with
various numbers of sectors, and the remaining LLC size.
To make the number of sets power of two, the degree of set
associativity is adjusted. For example with 5MB LLC size,
the set associativity is set to 10 instead of 16. Besides this,
some of the LLC size is also rounded up or down, but the
increase of decrease is within 3% of their original size.

Figure 8 shows the performance for the five workloads
as we vary the number of sectoring for DRAM cache. We
can see that for the first four workloads, when the num-
ber of sectors is increased from 1 to 2, the performance

Table 3. Space usage for LLC and on-die tag
No. of sector LLC size (MB) On-die tag size (MB)
1 5 3
2 6.375 1.625
4 7.0625 0.9375
8 7.40625 0.59375

is improved by about 5%. 4-sectored cache does not in-
crease IPC any more, and 8-sectored cache even degrades
the performance a little bit. To see why this happens, we
also plot the behavior for LLC and DRAM cache. Figure
9 shows MPI for SPECjAppServer as an example. Other
three workloads have the similar behavior. As can be seen,
the MPI for DRAM cache is increased very little when we
increase the number of sectoring. The MPI for LLC, on
the other hand, is reduced significantly from 1 sector to 2
sectors (about 20%). The reduction is about 5% from 2 to
4 and 4 to 8 sectors. This is because the LLC size is in-
creased by 27.5% from 1 sector to 2 sectors, whereas it is
only increased by 10.8% and 4.9% from 2 to 4 and 4 to 8
sectors respectively. Therefore, the improved performance
of LLC and degraded performance of DRAM cache makes
2-sectored cache achieve the best performance. This is also
true for the last workload. Specifically, as we keep increas-
ing the number of sector, the performance starts to degrade
due to the fact that MPI for DRAM cache is increased much
more than that for the first four workloads (not shown here
due to space limitation).

To exploit the spatial locality existed in server work-
loads, we also look at the performance impact by sector
prefetching, where the next line within the same sector is
prefetched when a miss occurs. Figure 10 shows the per-
formance when we use 2-sectored DRAM cache. The lines
indicate the MPI without and with prefetching, and the bars
show the corresponding IPC. We can see that prefetching
can reduce the MPI significantly. MPI for TPCC is reduced
by 30%, and MPI of all other four workloads are reduced
by about 45%. However, the throughput is not improved as
much. For SAP and SPECjbb, their IPC is increased about
8%, and for other workloads, their IPC is increased little.
This is because SAP and SPECjbb have more spatial lo-
cality and unable to hide memory latency compared to the
other workloads.

4.3.3 Partial Tag Performance

We look at the impact of DRAM cache with on-die partial
tag. Fixing the total size of LLC and the on-die tag for
DRAM cache as 8M, Table 4 shows the space consumption
for LLC and on-die partial tag as we vary the number of
partial tag bits. As we have already described in previous
section, eight bits of partial tag seems to have a high true hit
rate, therefore we choose the number of partial bits from 4
to 10.
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Figure 8. Impact of sectored
DRAM cache
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Figure 9. Impact of sectored
DRAM cache on SPECjAS

0.00

1.00

2.00

3.00

4.00

5.00

6.00

TPCC SAP SPECjbb SPECjAS 4-Server

IP
C

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

M
P

I

IPC w/o prefetching IPC w/ prefetching MPI

 
 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 10. Impact of sector
prefetching (2-sectored)
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Figure 11. Impact of partial
tag
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Figure 12. Impact of partial
tag for SAP
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Figure 13. Impact of partial
tag on MPI

Table 4. Space usage for LLC and on-die tag
Partial tag bits LLC size (MB) On-die tag size (MB)
4 7.25 0.75
6 6.6 1
8 6.75 1.25
10 6.5 1.5

Figure 11 shows the throughput of the five server work-
loads with various partial tag lengths. The IPC is increasing
as we increase the partial tag length from 4 to 8, with 8 bits
having the best performance, and then it starts reducing af-
ter 8. This behavior is because of the combined impact of
LLC and partial tag. Take TPCC for example, Figure 12
illustrates the MPI for both LLC and DRAM cache. From
the figure, we can see that the MPI for LLC is increasing as
we increase the partial tag length due to the reduced LLC
size. On the other hand, the MPI for DRAM cache is re-
ducing because of the increased true hit rate from partial
tag. While the MPI for LLC continues increasing even after
10-bit partial tag, the MPI for DRAM cache almost keeps
constant after 8. Therefore, 8-bit partial tag DRAM cache
shows the best performance. This is true for all the other
four server workloads.

In previous figures, both the LLC size and the partial
tag length are varied. To study more the partial tag per-
formance, we ignore the partial tag space consumption and
fix the LLC size at 8MB. Figure 13 illustrates the MPI of
DRAM cache as we increase the partial tag length from 4 to
10. We can see that the MPI is reduced significantly from
4 to 6 (about 13% to 27%). After 6, the MPI is reduced

much slower, and almost keeps constant after 8. In fact, 8-
bit partial tag can achieve the same MPI as the full tag. Our
measurement with the four workloads show that 8-bit par-
tial tag can achieve the true hit rate at around 96% to 98%
(not shown here due to space limitation).

4.3.4 Overall Performance

Figure 14 illustrates the performance comparison for the
five server workloads with all the design options that we
have discussed. First four workloads have the similar be-
havior. Compared to the based case, where no DRAM cache
is used, off-die DRAM cache improves the performance by
about 6 to 18%. With on-die tagged DRAM cache, SAP and
SPECjbb get another 13% and 27% improvement, whereas
TPCC and SPECjAppServer get only 7% and 4% increase.
When 2-sectored DRAM cache is used, which reduces the
on-die tag space about half, the throughput is improved by
around 5 to 6%. Prefetching the next line improves SAP
and SPECjbb about 7% while does not affect TPCC and
SPECjAppServer as much. When 8-bit partial on-die tag is
used, which saves 60% of the on-die full tag, the through-
put is improved by 6 to 8% compared to the on-die full
tagged cache. Notice that this improvement is a little bit
more than that with a 2-sectored cache. Finally we com-
bined a 2-sectored cache with 8-bit partial on-die tag, and
also prefetch the next line in the sector. The last bar in the
figure shows that it can improve the performance by 25 to
73% compared to the base case, and 9 to 17% compared to
the on-die full tagged cache.
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Figure 14. Performance comparison with var-
ious DRAM cache design options

When all four server workloads are running simultane-
ously on a 32-way CMP system, we see different behav-
ior from the first four workloads. In the base case where
no DRAM cache is used, the memory utilization is almost
100%. An off-die DRAM cache reduces the memory uti-
lization by about 50%, which leads to 79% improvement
in the overall throughput. Compared to the first four work-
loads where only 8 threads are running simultaneously, the
DRAM cache reduces the memory bandwidth requirement
significantly. With on-die tag DRAM cache, the perfor-
mance is increased by another 11%. Finally if we combine
all the design options, where the DRAM cache is 2-sectored
with 8-bit partial on-die tag and prefetching, the throughput
is improved the by 2x compared to the base case, and 22%
compared to the on-die full tagged cache.

5 Conclusions and Future Work

In this paper, we investigated the integration of large-
capacity, high-bandwidth and low-latency DRAM caches
to address memory stall overhead. We showed that the
DRAM caches of moderate size (64MB) provide a hit rate
of 50 to 80% for key commercial workloads in 8-core and
32-core CMP platforms. We also described that placement
of DRAM cache tags and its associated space overhead are
the key issues that need to be addressed in order to achieve
the performance potential of DRAM caches. We evaluated
five different DRAM cache architecture options differing
in placement of tags as well as tag reduction mechanisms
(sectoring and partial tags). Through detailed evaluation us-
ing commercial server workloads, we showed that a hybrid
DRAM cache organization (combing partial on-die tag and
sectored cache with prefetching) can achieve a performance
improvement of 25% to 75%. This makes DRAM caches
very attractive for future CMP server platforms.

For future work, we will evaluate DRAM caches for
multi-socket CMP platforms, and also consider other op-
portunities such as cache compression [7] and intelligent

prefetching schemes to take additional advantage of large
capacity, high bandwidth DRAM caches.
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