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Abstract

Clustered VLIW embedded processors have become
widespread due to benefits of simple hardware and low
power. However, while some applications exhibit large
amounts of instruction level parallelism (ILP) and bene-
fit from very wide machines, others have little ILP, which
wastes precious resources in wide processors. Simultane-
ous MultiThreading (SMT) is a well known technique that
improves resource utilization by exploiting thread level par-
allelism at the instruction grain level. However, imple-
menting SMT for VLIWs requires complex structures. In
this paper, we propose CSMT (Cluster-level Simultaneous
MultiThreading) to allow some degree of SMT in clustered
VLIW processors with minimal hardware cost and complex-
ity. CSMT considers the set of operations that execute si-
multaneously in a given cluster (named bundle) as the as-
signment unit. All bundles belonging to a VLIW instruction
from a given thread are issued simultaneously. To minimize
cluster conflicts between threads, a very simple hardware-
based cluster renaming mechanism is proposed. The ex-
perimental results show that CSMT significantly improves
ILP when compared with other multithreading approaches
suited for VLIW. For instance, with 4 threads CSMT shows
an average speedup of 113% over a single-thread VLIW ar-
chitecture and 36% over Interleaved MultiThreading (IMT).
In some cases, speedup can be as high as 228% over single
thread architecture and 97% over IMT.

1. Introduction

Very Long Instruction Word (VLIW) is a paradigm for
exploiting Instruction Level Parallelism (ILP) based on ex-
posing the architecture details to the compiler, so that ILP
can be extracted at compile time. Therefore, contrary to
superscalar processors, no special hardware like register
renaming, instruction queues, reorder buffers, etc. is re-
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quired. VLIWs have been used in general purpose comput-
ing [3, 16, 10]. However, due to the hardware simplicity,
low cost and low power consumption, the VLIW paradigm
has found its niche in embedded computing [5, 18].

Many embedded applications exhibit significant
amounts of ILP, or at least regions with high ILP inter-
leaved with low ILP regions. To exploit such ILP, VLIWs
need to be designed with a significantly wide issue width,
which is limited by the number of functional units (FUs).
However, the number of FUs is limited by the scalability
of the register file and the complexity of the bypassing
network. Register file access time grows linearly with the
number of ports, while area grows quadratically with the
number of ports, which are proportional to the number of
FUs [17]. The bypassing network can impact area and
processor cycle time in a similar way. Clustered VLIW
architectures tackle this problem by introducing more
than one register file and clustering the FUs according
to the register files they are connected to. This approach
allows higher levels of issue width than unicluster VLIW
architectures, since register file ports and bypass network
are determined by cluster width. While cluster width can be
kept low, issue width can be easily scaled by increasing the
number of clusters. Higher issue width allows to achieve
higher performance levels without scaling up the frequency
achieving a better power budget as well. Many VLIWs
have been designed using the clustered approach [9, 18].

Many applications scale well with issue width, for in-
stance, colorspace conversion used in high performance
printers has an IPC of 3.9, 6.0 and 8.9 for an issue width
of 4, 8 (2 clusters of 4) and 16 (4 clusters of 4) respec-
tively, which makes a very high issue width processor de-
sirable. However, the ILP exposed in many applications, or
in some code regions, is limited and the processor is heavily
underutilized. Also, in a production environment, high ILP
applications like image processing coexist with low ILP ap-
plications like control code or the OS itself. Simultaneous
MultiThreading (SMT) [20] is a well known technique to
improve the resource utilization by exploiting thread level
parallelism (TLP). Pure SMT at the operation level has been
proposed for VLIWs [11, 14]. [14] is aimed at increas-
ing single program performance using compiler-generated
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(speculative) threads in a multithreaded VLIW architecture.
It involves extensive changes to the ISA, compiler support
for generation of multiple threads, and additional hardware
resources such as: buffers for speculative load and store in-
structions, a thread synchronization hardware and a com-
plex operation welder. The welder is implemented as a
crossbar and, because of the complex hardware, scalabil-
ity is limited beyond two threads for cost/performance rea-
sons. [11] requires some sort of out-of-order execution
[15], which significantly increases processor complexity,
taking away most of the advantages of VLIWs. In order to
maintain the VLIW simplicity, simpler multithreading tech-
niques have been proposed in the literature.

Block multithreading [22] executes instructions from a
single thread until it is blocked by an event (a cache miss,
for instance). When that happens, a fast context switch
gives control to a different thread so that most of the miss la-
tency is hidden. However, there are still a few vertical slots1

wasted due to context switch time. Moreover, no horizontal
empty slot2 inside a VLIW can be used for other threads.

Interleaved multithreading [19] does a zero cycle con-
text switch every cycle, so that instructions from differ-
ent threads are ”interleaved” at execution time. Interleaved
multithreading allows the removal of the bypass network.
However, doing so hinders single thread performance when
only one thread is present. In order to hide cache misses,
many threads are required. Moreover, it still does nothing
to remove horizontal waste.

In [2], a quite different approach for clustered VLIWs is
taken. The processor has two modes: single threaded and
multithreaded. In single threaded mode, VLIW instructions
are issued from a single thread that has been compiled to
make use of all the clusters. In multithreaded mode, short
VLIW instructions are issued from multiple threads by exe-
cuting each thread in a different cluster. In the latter mode,
threads have been compiled to use a single cluster. Switch-
ing between modes is also compiler (or programmer) con-
trolled. This approach does nothing to avoid vertical waste
due to cache misses and cannot exploit TLP between differ-
ent applications.

Our approach, named CSMT (Cluster-level Simultane-
ous MultiThreading), tries to exploit TLP at the cluster level
without requiring any compiler support. Since it is trans-
parent to the compiler, it can be used either with compiler
generated threads or with threads belonging to different ap-
plications. CSMT issues simultaneously several VLIW in-
structions from different threads when no conflict exists in
the clusters they require to execute. In order to reduce clus-
ter conflicts when several threads require the same cluster,
a very simple hardware-based cluster renaming technique is
used to map logical clusters, belonging to different threads,
to different physical clusters. With such approach, a signif-
icant amount of horizontal waste is removed. In addition,

1Cycles where no operations are issued
2Operation slot inside a VLIW with a nop
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by marking threads that produce events like cache misses
as blocked, vertical waste is also removed. Finally, CSMT
does not degrade single thread performance since all re-
sources are available when a single thread is present.

The rest of the paper is organized as follows. Section 2
presents some statistics that motivate CSMT, as well as a
simple example. The details of the CSMT architecture are
discussed in Section 3. An evaluation and comparison with
other approaches is performed in Section 4. Finally, Section
5 concludes the paper.

2. Motivation

Figure 1 shows the percentage of time a given num-
ber of clusters are used in a 4-cluster architecture with 4-
issue width per cluster respectively for the benchmarks col-
orspace [1], mcf [8] and djpeg [12]. We assume a cluster is
used when any of its FUs is used. The figure presents data
for a perfect memory model (PM) with no cache misses and
a real memory model (RM). We have considered a 64-KB
4-way set-associative ICache and DCache and a cache miss
latency of 20 cycles in this simulation for the real memory
model. More details about the architecture are available in
Section 3.

Colorspace3 benchmark has a high ILP degree, close to
6 with a 8-issue width and close to 9 with a 16-issue width.
Due to this high ILP, with a perfect memory model all the
clusters are simultaneously in use most of the time. How-
ever, when a real memory model is considered, a signifi-
cant amount of time is wasted in handling the cache misses

3Used in high performance printers
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Figure 3: Instruction stream on a 4-thread 4-cluster architecture (a) Logical cluster assignments (b) Physical cluster
assignments after cluster renaming (c) Merged instruction stream

(close to 40% of the execution). In order to reduce the time
the processor is idle, a simple multithreading technique like
interleaved multithreading [19] can be used to tolerate the
cache misses by scheduling other threads during the miss
intervals, increasing in that way the processor throughput.

Other applications exhibit much lower ILP. For instance,
the average IPC in SPEC [8] or Mediabench [12] bench-
marks range, in general, between 1 and 2. Thus, when
repeating the previous experiment using SPEC and Medi-
abench benchmarks, we obtain significantly different re-
sults in cluster usage, as shown in Figure 1. A consider-
able amount of time is spent in cycles where no cluster is
used. This time can be easily reduced by using interleaved
multithreading (IMT). However, when any cluster is used,
the cluster usage is very unbalanced and most of the time
only a single cluster is used. This is reasonable, since the
compiler tries to schedule as many operations as possible
in a single cluster to avoid communication overhead. Only
a small number of clusters thus are used most of the time,
since there is not always enough ILP available during the
program’s execution.

Figure 2 represents the percentage of cycles in which
each cluster is in use (whenever any cluster is used) for mcf
and djpeg benchmarks. Cluster 0 is the most heavily used
and there is little use of other clusters. As can be seen, there
is a heavy load imbalance in both programs.

The use of SMT may improve the cluster utilization but,
if we implement SMT in a naive way, most of the threads
will compete for resources on a few clusters most of the
time, rather than using the resources in other clusters which
are heavily under-utilized. In fact, most of the time all the
threads will compete for the use of cluster 0, as can be easily
derived from Figure 2.

CSMT, the SMT approach proposed in this paper, is
based on renaming at execution time the clusters initially
assigned by the compiler. Conflicts are resolved at clus-
ter level instead of FU level, which is significantly easier
and cheaper than a fully blown SMT. For example, if two
threads (T0 and T1) are using only cluster 0 in a given cycle,
operations from cluster 0 in T1 can be assigned to cluster 1,
avoiding the conflict. Cluster renaming is explained later in
Section 3.1.

Figure 3 shows a sample multithreaded execution for
a 4-thread 4-cluster architecture using CSMT. Figure 3(a)

the cluster assignment (logical clusters) done by the com-
piler for the 4 threads. Letters A to D represent a bundle4

scheduled in logical clusters 0 to 3 (LC0-LC3) and the sub-
script indicates the execution cycle in a single-thread envi-
ronment. So, A0 means the group of operations belonging
to bundle A that are assigned to cluster 0 by the compiler
and executed at cycle 0, B0 the operations assigned to clus-
ter 1 and executed at cycle 0, and so on. Figure 3(b) shows
the physical mapping of clusters (PC0-PC3) done by CSMT
after cluster renaming for each thread. Notice that this clus-
ter renaming consists simply in rotating the original clusters
by a fixed value for each thread.

The effect of using CSMT is shown in Figure 3(c).
Thread priority follows a round robin policy. Initially,
Thread 0 has the highest priority. Thus, cycle 0 starts by
assigning bundles A0 and B0 from Thread 0 to physical
clusters 0 and 1 respectively. Thread 1 cannot be sched-
uled, since cluster PC1 is already used by bundle B0 from
Thread 0. Bundles A0 of threads 2 and 3 are scheduled at
clusters 2 and 3 respectively, since no collision exists in the
physical clusters assignment.

At cycle 1, the highest priority is assigned to operations
belonging to Thread 1 following the round robin policy.
Bundles A0, B0 from Thread 1 are assigned to clusters 1
and 2. Bundles from Thread 2 cannot be scheduled due to
collision, and then bundles from Thread 3 are assigned to
the free clusters. Operations from Thread 0 are not sched-
uled since no cluster is available. The highest priority is
assigned in next cycle to Thread 2, and so on. The sequen-
tial execution of the four threads in a machine with perfect
memory would require 8 cycles. CSMT, however, would
require only 4 cycles, as shown in Figure 3(c).

3. CSMT Architecture

The CSMT architecture evaluated in this paper is based
on the VEX clustered architecture [21] modeled upon the
commercial HP/ST Lx [5] VLIW family. The VEX C com-
piler [21] used in this study is a derivation of HP/ST ST200
C compiler, which itself is a derivative of Multiflow com-
piler [13] that uses Trace Scheduling [6] as global schedul-

4An operation is the basic execution unit, collection of operations
scheduled to execute in the same cluster form a bundle, and the collection
of bundles scheduled to execute together is called a VLIW instruction
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ing algorithm and Bottom Up Greedy [4] as cluster assign-
ment algorithm.

VEX is a 32-bit clustered integer VLIW architecture that
provides scalability of issue width and functionality. FUs
within a cluster can access only local register files with the
exception of Branch FU, which may read registers from
other clusters. Clusters are architecturally visible and re-
quire explicit inter-cluster copy operations to move data
across them. VEX is a less-than-or-equal (LEQ) architec-
ture, where latencies are exposed to the compiler and, if
hardware can complete an operation in the same or fewer
cycles, no deadlocks are required. However, for operations
like memory accesses, which may take longer than the as-
sumed latency, execution is stalled until the architectural as-
sumptions hold true.

Each cluster has 2 multipliers and 1 load/store unit, and
the number of ALUs is the same as the issue width of the
cluster. Memory and multiply operations have latency of 2
cycles, and the rest have single-cycle latency.

There is no branch predictor and fall-through path is the
predicted path. The incorrect instructions issued following
a taken branch are squashed. Branches are two phased: the
first operation does the comparison and sets the branch reg-
isters ahead of the actual branch, and the second is the actual
control flow changing branch operation. There is a 2-cycle
delay from compare to branch, and the taken branch penalty
is 1 cycle.

The VEX architecture is decoupled from the implemen-
tation of the inter-cluster communication networks and, for
our evaluations, a fully connected point to point communi-
cation network between clusters has been assumed.

The architecture supports only integer applications since
it is based on the commercial ST200 [9] which has been
used for many multimedia applications coded in fixed point
arithmetic. Compiler supports floating point by emulation,
which can cause a huge slowdown for floating point appli-
cations. For this reason, only integer applications have been
considered in our experiments.

The proposed CSMT architecture is built upon the base
VEX architecture with addition of extra hardware for mul-
tithreading and some CSMT specific microarchitectural
changes.

Each thread has its own register file per cluster, which
can be an important design consideration. Each pipeline
stage is tagged with individual thread identifiers. This tag-
ging is used to selectively flush instructions from a partic-
ular thread at a branch misprediction or a cache miss. For
CSMT implementation we require all clusters to be homo-
geneous. This is usually true for most of the existing clus-
tered VLIW processors and, in particular, for Lx. The only
exception in Lx is the branch unit, which need to be present
in all clusters to have homogeneous clusters. The cost of the
extra branch units however, is insignificant due to the sim-
plicity of the unit. All the FUs have to be fully pipelined so
that the instructions from other threads can use that FU next

LC0 LC1 LC2 LC3

PC0 PC1 PC2 PC3

LC0 LC1 LC2 LC3

PC0 PC1 PC2 PC3

Thread 1

LC0 LC1 LC2 LC3

PC0 PC1 PC2 PC3

Thread 2

LC0 LC1 LC2 LC3

PC0 PC1 PC2 PC3

Thread 3Thread 0

Physical
Clusters

Instruction
Buffer

Figure 4: Cluster renaming logic for a 4-thread 4-cluster
architecture

cycle, since we do not track resource unavailability because
of non-pipelined FUs. A LEQ (less-than-equal) model of
execution, is also necessary so that any delay in issuing the
next instruction can be tolerated and exceptions can be dealt
with. Also, since we have assumed a fully connected point
to point communication, communication conflicts do not
arise. No special or extra hardware is required for excep-
tion detection because of the in-order pipeline and thread
tagging done at each pipeline stage. So, if an exception is
detected at any time, it is straightforward to know which
thread and what instruction caused the exception. When
an exception occurs, the pipeline of the excepting thread is
flushed and exception handler is invoked.

Next sections describe the microarchitectural changes,
which include CSMT cluster renaming technique, thread
merge hardware, changes in the pipeline and its effects.

3.1. Cluster Renaming

CSMT virtualizes the cluster naming mechanism to
achieve a dynamic renaming of clusters for the threads. The
cluster renaming distributes the same Logical Cluster of dif-
ferent threads to different Physical Clusters so that cluster
conflicts between threads are reduced. The mapping is fixed
for each thread once it starts executing until it finishes or
is switched out of context. The renaming function used is
simply a cluster shift value for each thread, based on the
number of clusters and the number of simultaneous threads
supported by the architecture. For instance, in a 4-thread
4-cluster architecture, Thread 0 is shifted by 0, Thread 1 is
shifted by 1, Thread 2 is shifted by 2 and Thread 3 is shifted
by 3. So, while logical cluster 0 on Thread 0 still maps to
physical cluster 0, logical cluster 0 on Thread 2 will map
to physical cluster 2. Similarly, for a 2-thread 4-cluster ma-
chine, a cluster shift value of 2 can be used.

The mapping is only visible to the processor and trans-
parent to the compiler. This avoids any special compilation
to achieve extra performance on a multithreaded platform.

As the shift is fixed for each thread, it can be easily hard-
coded in the hardware for a given number of threads and
clusters. A very cheap cluster rename logic is possible by
rerouting the wires from the instruction buffer of the threads
to a hardcoded cluster. Figure 4 shows the wiring for a 4-
thread 4-cluster processor. LCi means logical cluster i and
PCi means physical cluster i.
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The same effect could have been produced by the com-
piler. However, that would require the compiler to know
all the applications that will run simultaneously in a multi-
threaded environment.

Besides renaming the clusters, CSMT also needs to re-
name the operands for any operation where an explicit clus-
ter number is used. In our case, only the inter cluster
communication operations send/recv use cluster numbers in
their operands. The renaming of the operands can be done at
any pipeline stage before execution of the operation, since
the pipeline is tagged with a thread identifier and renaming
is equivalent to adding the shift value to the cluster number.
This can easily be done at the decode stage where the logic
for identifying the operations is already available.

3.2. Thread Merge Hardware

Cluster assignment conflicts between threads are re-
solved on the basis of the individual priority of each thread.
The execution packet is formed by merging instructions
from as many threads as possible according to their prior-
ity. First, all the bundles from the highest priority thread
are selected; then, bundles from the next priority thread are
selected to be merged in execution packet if they do not
collide with the already formed packet, and so on. Each cy-
cle, a different priority is assigned to each thread in a round
robin way. It is nevertheless possible to have different prior-
ity schemes which can be exposed to and controlled by the
OS. For instance, a fixed priority scheme can be used for
real-time applications, with the thread with real-time dead-
lines running with highest priority.

Figure 5 shows the thread merge hardware required to
implement CSMT in a 4-thread 4-cluster architecture. This
hardware consists of two parts: Thread Select Logic (TSL)
and Bundle Select Logic (BSL). BSL selects a bundle from
different threads on a per-cluster basis. TSL controls this se-
lection. Assuming the same scenario of cycle 0 in Figure 3,
TSL detects that Thread 1 cannot be scheduled, as there is a
collision with the higher priority Thread 0 at physical clus-
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Instruction
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Figure 6: Processor pipeline

ter 1, but instructions from Threads 2 and 3 do not collide.
So, TSL generates appropriate signals for BSL to merge
threads 0, 2 and 3 and BSL selects bundles LC0 and LC1
from Thread 0, LC0 from Thread 2 and LC0 from Thread 3
(dark shaded), while bundles from Thread 1 are not selected
for merging (light shaded). This logic is very simple, and
for a 4-thread 4-cluster architecture requires approximately
300 transistors and is within 3 levels of gates delay. The
implementation details can be found in [7] and are omitted
from this paper due to space considerations.

To prevent any negative effect on the cycle time, we as-
sume that this hardware is in a separate pipeline stage. How-
ever, depending on the target frequency of the processor, it
may be implemented in the instruction decode stage. The
pipeline we use is similar to Lx pipeline except for an extra
pipeline stage for thread merge, as shown in Figure 6. This
increases the taken branch penalty to 2-cycles, which is 1
more than Lx5.

4. Performance Evaluation

In order to test the efficacy of CSMT, experiments have
been done in a 16-issue, 4-cluster architecture configuration
(i.e. 4-issue per cluster). All the experiments have been
done for a perfect memory model with no cache misses and
for a real memory model (64KB, 4-way set-associative, 20-
cycles miss penalty for both ICache and DCache) and as-
suming a target processor frequency of 250 MHz.

We have used a set of MediaBench [12] and relevant
SpecInt 2000 [8] applications. We have also included pro-
duction color space conversion [1] and imaging pipeline
[21] benchmarks used in high performance printers. The
benchmarks are shown in Table 1. Columns ILPr and
ILPp show, for each benchmark, the ILP for real and per-
fect memory models respectively. Benchmarks are classi-
fied by their ILP in three categories: high ILP (colorspace
and imgpipe), medium ILP (g721encode, g721decode,
cjpeg and djpeg) and low ILP (mcf, bzip2, blowfish and
gsmencode). This classification is shown in column ILP
Degree as L (low ILP), M (medium ILP) and H (high ILP).

The workloads used to evaluate CSMT are listed in Ta-
ble 2. In order to select appropriate thread configurations,
we have combined benchmarks with different ILP degrees,
attempting to cover all possible combinations. Column la-

5In the Lx architecture, branch registers are read during instruction de-
code stage
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Table 1: Benchmarks
Benchmarks ILP Degree Description ILPr ILPp

mcf L Minimum Cost Flow 0.96 1.34
bzip2 L Bzip2 Compression 0.81 0.83
blowfish L Encryption 1.11 1.47
gsmencode L GSM Encoder 1.07 1.07
g721encode M G721 Encoder 1.75 1.76
g721decode M G721 Decoder 1.75 1.76
cjpeg M Jpeg Encoder 1.12 1.66
djpeg M Jpeg Decoder 1.76 1.77
imgpipe H Imaging pipeline 3.81 4.05
colorspace H Colorspace Conversion 5.47 8.88

Table 2: Workload configurations
ILP Comb Thread 0 Thread 1 Thread 2 Thread 3
LLLL mcf bzip2 blowfish gsmencode
LMMH bzip2 cjpeg djpeg imgpipe
MMMM g721encode g721decode cjpeg djpeg
LLMM gsmencode blowfish g721encode djpeg
LLMH mcf blowfish cjpeg colorspace
LLHH mcf blowfish imgpipe colorspace
LMHH gsmencode g721encode imgpipe colorspace
MMHH djpeg g721decode imgpipe colorspace
HHHH imgpipe colorspace imgpipe colorspace

beled as ILP Comb indicates these ILP combinations. For
example, configuration LLHH has two benchmarks with
low ILP and two benchmarks with high ILP and configu-
ration LMHH has one benchmark with low ILP, one bench-
mark with medium ILP and two benchmarks with high ILP.

We carried out the experiments by arranging the work-
loads in a multitasking environment as shown in figure 7.
The number of threads supported by processor is exposed
as virtual CPUs and the OS task scheduler schedules as
many threads to run as the number of virtual CPUs with
a timeslice of 1M cycles. After the expiry of the timeslice,
a context switch takes place. The delay of a context switch
is assumed to be neglegible. To improve fairness, after the
context switch replacement threads are picked at random
from the workload to alleviate any bias. For a single-thread
processor, the threads run in serial order with a single thread
running in the whole timeslice. For a 2-thread processor, 2
threads are scheduled to run together in the same timeslice
and, for a 4-thread processor, 4 threads share the timeslice.
The workloads are executed till one thread completes exe-
cuting 100M VLIW instructions.

In order to compare CSMT to other techniques previ-
ously proposed in the literature, we have also evaluated the
performance obtained by using a fine grained interleaved
multithreading model (IMT) [19]. The architectural param-
eters are the same for IMT as for CSMT, except that the
extra pipeline stage is not required in IMT and the taken
branch penalty is 1 cycle instead of 2, as assumed in CSMT.

In figures 8 to 11, baseline is the original single-thread
base architecture, while extrapipe is the single-thread base
architecture with the extra pipeline stage to evaluate the im-
pact of this extra stage. IMT2 and CSMT2 are 2-thread
processor configurations for IMT and CSMT respectively,

Context Switch

1M cycles

a) Single Thread

b) Multi Threaded (2 threads)

c) Multi Threaded (4 threads)

Thread 1 Thread 2 Thread 3Thread 0

Figure 7: Multitasking execution for 4 threads
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and IMT4 and CSMT4 denote a 4-thread processor config-
uration (all configurations have 4 clusters with 4 issue width
per cluster).

Figure 8 shows the cluster usage statistics for all the
workload configurations assuming a perfect memory model
with no cache misses. Cluster usage is the average num-
ber of clusters used per cycle by the workload during ex-
ecution. It can range from 0 to the maximum value of 4.
On a single thread processor (baseline and extrapipe), ex-
trapipe has a little degradation in cluster usage because of
the effect of the extra pipeline stage. However, the cluster
usage improves considerably when the number of threads
is increased, and more clusters are used most of the time.
On average, the improvement of CSMT over IMT on a 2-
thread processor is moderate (16.9%) because of the limited
opportunities to merge threads. However, when a 4-thread
processor is used, the average improvement in cluster usage
is quite significant (57.9%), with an average cluster usage
close to 3. Note that, in a high ILP workload like HHHH,
there is little improvement in cluster usage over IMT. This
is because very few opportunities to combine instructions
exist, since both approaches already use a high number of
clusters every cycle. However, in low ILP workloads like
LLLL, where many opportunities exist to combine instruc-
tions, CSMT has a significantly higher cluster usage (28.5%
for 2-threads and 81.7% for 4-threads).
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Figure 9 shows the cluster usage statistics when a real
memory model is used. Notice that, with real memory, the
improvement over IMT is not so significant for a 2-thread
processor, though CSMT still does better (11.2% improve-
ment). This is because, now, most of the time the inter-
thread parallelism is used to hide cache miss stall cycles.
However, with a 4-thread processor, CSMT does signifi-
cantly better than IMT (42.3% on average), and even for
the workload HHHH there is an improvement of 6.4%.

Finally, we have computed the IPC achieved by CSMT
and IMT. Figure 10 shows the results obtained assuming
a perfect memory model, and Figure 11 shows the same
results with the real memory model.

The first thing to notice is that, with a perfect mem-
ory model (Figure 10), IMT does slightly better than the
baseline processor. This is because, despite the fact that
there are no vertical no-ops6 due to memory stalls, a few
issue cycles are lost due to taken branches and def-to-use
latency of operations like loads, multiplies and compares.
Our IMT implementation also hides these vertical no-ops by
issuing instructions from an alternate thread. Since CSMT
hides horizontal nops as well, it clearly outperforms IMT,
specially with a a 4-thread processor configuration. In this
case, CSMT (CSMT4) has an average speedup of 68% over
the baseline and 50% over a 4-thread IMT configuration.

6A cycle where no instruction is issued
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Figure 11: IPC in real memory

Notice that, for low ILP workloads like LLLL, the speedups
are as high as 225% over the baseline and 137% over the
4-thread IMT configuration. Also notice that IMT with a 4-
thread configuration achieves almost the same performance
as with a 2-thread IMT because few vertical no-ops exist.
CSMT with a 4-thread configuration, however, experiences
a significant performance improvement (30.2%) over a 2-
thread configuration (CSMT2), since there are more oppor-
tunities to fill up the horizontal nops. Even with the work-
load HHHH, CSMT with a 4-thread configuration has a
visible improvement in IPC (1.7% over a 2-thread CSMT
and 5.7% over a 4-thread IMT). Moreover, even a 2-thread
CSMT outperforms 4-thread IMT by 17.4%. This shows the
ability of CSMT to remove a significant part of horizontal
waste.

Finally, when real memory is considered (Figure 11),
the performance of a single-thread VLIW degrades sig-
nificantly, while IMT and CSMT suffer only a minor im-
pact. This fact shows the ability of both approaches to hide
vertical no-ops. CSMT, however, still outperforms IMT
by a significant margin. On average, a 2-thread CSMT
configuration performs almost as well as a 4-thread IMT
(IMT4 is only 3% better), while a 4-thread CSMT con-
figuration outperforms both by a significant margin. For
instance, a 4-thread CSMT configuration has an average
speedup of 113% over the baseline, 41% over a 2-thread
CSMT (CSMT2) and 36% over a 4-thread IMT configura-
tion (IMT4). In particular cases, speedup with a 4-thread
CSMT configuration can be as high as 227% over baseline
and 97% over a 4-thread IMT configuration (LLMM). For
the workload HHHH, a 2-thread CSMT configuration has
little improvement of 2.5% over a 2-thread IMT configura-
tion, but a 4-thread CSMT configuration has a noticeable
improvement of 7.3% over a 4-thread IMT configuration.

Notice that, for single-thread configurations (baseline
and extrapipe), there is a small performance degradation
when an extra pipeline stage is assumed. This degradation
will be noticeable in CSMT architectures when executing
a single thread. However, that will happen only if the ex-
tra pipeline stage is actually required to meet cycle time
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constraints. If the extra pipeline stage is not required, the
CSMT performance for multithreaded configurations will
be better than the results shown in this paper.

5. Conclusions

In this paper we have presented CSMT, a new approach
to achieve the benefits of Simultaneous MultiThreading on
clustered VLIW processors at a very small hardware cost.
CSMT considers the set of operations that execute simulta-
neously in a given cluster (named bundle) as the assignment
unit. All bundles belonging to a VLIW instruction from a
given thread are issued simultaneously.

The analysis performed on a set of benchmarks using the
Lx architecture [5] shows that, in general, no cluster is used
during a significant amount of time due (mostly) to cache
misses. Moreover, low ILP applications use only a few
clusters most of the time. The compiler assigns operations
mainly to the first clusters and tries to reduce the number
of clusters used in order to reduce communication overhead
among different clusters. As a consequence, the assignment
of clusters collides when several threads are simultaneously
executed. CSMT avoids this problem and allows a more
parallel execution of the threads by renaming, at execution
time, the clusters previously assigned by the compiler. The
renaming mechanism is fast and has a very low hardware
complexity (approx 300 transistors and 3 levels of gate de-
lay).

CSMT implementation may require an extra pipeline
stage if the renaming hardware cannot fit in the decode stage
to meet the desired target frequency. However, the perfor-
mance loss because of the extra pipeline stage in a single
thread environment is very small (less than 3%).

Our results show that CSMT makes a better use of clus-
ters than interleaved multithreading (IMT) with a negligi-
ble hardware cost. In terms of performance, CSMT sig-
nificantly outperforms IMT. In general, CSMT for a 2-
thread processor, achieves almost the same performance
as IMT for a 4-thread processor and also outperforms it
in some cases. For a 4-cluster machine with 4 threads,
CSMT shows an average speedup of 68% over a single
thread machine and of 50% over IMT assuming no cache
misses, which shows the ability of CSMT to remove hori-
zontal waste. When a realistic memory system is consid-
ered, the speedup of CSMT over single thread increases to
113% while speedup over IMT gets limited to 36%. This
is because most of the resources wasted are due to stalls
caused by cache misses, and IMT already does a good job
hiding memory latency. However, CSMT still has a very
significant advantage over IMT due to its ability to remove
both vertical and horizontal waste.
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