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Abstract
We present new techniques for explicit constraint satisfac-

tion in the incremental placement process. Our algorithm
employs a Lagrangian Relaxation (LR) type approach in the
analytical global placement stage to solve the constrained
optimization problem. We establish theoretical results that
prove the optimality of this stage. In the detailed place-
ment stage, we develop a constraint-monitoring and satisfac-
tion mechanism in a network (n/w) flow based detailed place-
ment framework proposed recently, and empirically show its
near-optimality. We establish the effectiveness of our general
constraint-satisfaction methods by applying them to the prob-
lem of timing-driven optimization under power constraints.
We overlay our algorithms on a recently developed uncon-
strained timing-driven incremental placement method Flow-
Place. On a large number of benchmarks with up to 210K
cells, our constraint satisfaction algorithms obtain an av-
erage timing improvement of 12.4% under a 3% power in-
crease limit (the actual average power increase incurred is
only 2.1%), while the original unconstrained method gives an
average power increase of 8.4% for a timing improvement of
17.3%. Our techniques thus yield a tradeoff of 75% power
improvement to 28% timing deterioration for the given con-
straint. Our constraint-satisfying incremental placer is also
quite fast, e.g., its run time for the 210K-cell circuit ibm18 is
only 1541 secs.

1 Introduction
As IC design enters the very deep submicron (VDSM) era,

the goal of placement is no longer only minimizing the wire
length (WL), though it is a very useful metric for minimizing
chip area and improving routability, and has been well tack-
led by some recent works [14, 15, 16]. Critical path delay
and net switching power are also important metrics that will
change enormously with different placements. Therefore, re-
cent placement tools need to take several metrics into consid-
eration at the same time. A common approach is focusing on
optimizing one metric while trying not to perturb other met-
rics (constraints) too much. To achieve this, [1, 2] place opti-
mization critical cells first to obtain a better improvement on
the targeted metric, and then place other cells according to the
constraint metrics; [4, 5, 6] use objective functions that are
weighted sum of optimization metrics and constraint metrics.
The major disadvantage of these two approaches is that they
cannot set an explicit constraint, since it is hard for them to
exactly control the constraint-metric change. [3] uses a linear�
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programming (LP) method to optimize switching power and
explicitly sets timing constraints in a large number of con-
straint equations (corresponding to critical and near-critical
paths) in the LP formulation. As a result, the solution process
is time consuming.

For the multi-objective placement problem, a new design
methodology of targeted incremental placement has recently
been shown to be very promising [7, 8]. Targeted incremental
placement starts from an initial placement that has fallen short
on some metrics’ requirements by certain amounts. It will try
to meet the requirements by replacing the cells that are critical
to the failed metrics. Compared to performing a completely
new placement for the same purpose, the advantage of incre-
mental placement lies in that it will only focus on the parts of
the initial placement that are crucial to the optimization met-
ric; this implicitly minimizes the perturbation to other metrics
that may already be optimized in the initial placement.

Recent state-of-the-art incremental placement works in-
clude [7, 8]. They are both timing-driven placement algo-
rithms, and can achieve a significant critical path delay re-
duction in a relatively short computation time. While results
obtained on the deterioration of other metrics (e.g., net switch-
ing power and WL) are acceptable (within 10%) due to the
fact that only a small part of the circuit is replaced, none of
these two methods explicitly addresses limiting the deteriora-
tion of these metrics. However, if the required constraints on
other metrics are very tight (e.g., an upper bound deterioration
of 3%), then constraint-satisfaction measures must be taken in
the incremental placement process. In this paper, we propose
constraint-satisfaction techniques for incremental placement
that can effectively handle very tight constraints.

Our constraint-satisfaction method uses a Lagrangian Re-
laxation (LR) type approach in the global placement stage.
The LR method is often used in mathematical programming
with complex or large number of constraint equations. The re-
laxation process is obtained by removing some or all the con-
straints and adding them to the objective function with some
coefficients. For example, for the following problem:

Minimize cT x subject to
Ax � b and Bx � 0

If we relax the first set of constraints, the new optimization
problem is:

Minimize cT x � wT � Ax � b � subject to

Bx � 0
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where wT is the coefficient for the constraint equations.
Choosing different values of wT will give different relaxed
optimization problems. Let R � wT � be the list of optimal val-
ues of the relaxed problems with different wT , and x � wT � be
the corresponding solutions. The relaxed problem has two
properties: 1) R � wT � is a lower bound on the optimal solution
of the original problem with any wT (a relaxation); 2) If the
optimal solution x � wT

0 � to a relaxed problem with wT � wT
0

satisfies the complementary slackness condition Ax � b � 0,
then it is also the optimal solution to the original problem.
The second property is true for the following reason. For any
feasible solution x to the original problem other than x � wT

0 � ,
we have cT x � wT

0 ��� wT
0
� Ax � wT

0 �	� b �
� cT x � wT
0
� Ax � b � , and

Ax � b if x is a feasible solution to the original problem. Thus,
since Ax � wT

0 ��� b � 0, cT x � wT
0 ��� cT x � wT

0
� Ax � b �� cT x,

which proves that x � wT
0 � is the optimal solution for the origi-

nal problem. Common LR methods use two steps to solve the
original problem, utilizing the two properties. First, we need
to find the best lower bound to the original problem, which
is max � R � wT ��� . Then, we need to test the complementary
slackness condition on the corresponding x � wT � to see if this
best lower bound is actually the optimal solution to the origi-
nal problem.

The key process in an LR approach is finding the coeffi-
cient vector wT that maximizes R � wT � . This is also the major
difference between an LR approach and the method of using
an objective function of weighted summation of the optimiza-
tion metric and the constraint metric with a fixed weight, i.e.,
in LR, the coefficient is determined dynamically for different
problem (circuit) instances. It is hard to believe that a fixed
weight will suit all circuits.

Our method follows the idea of LR in the global placement
stage, and utilizes special properties of incremental place-
ment to speed up the process of finding the best constraint
coefficient wT . Furthermore, to ensure that the constraints
are met in the final placement solution, we also construct a
constraint-metric monitoring mechanism in the detailed place-
ment stage and prevent detailed placement moves that vio-
late the constraint. In this paper, we focus on the problem
of timing-driven incremental placement under dynamic power
constraint, though our method is applicable to other cumula-
tive constraints, i.e., constraint metrics whose value for a cir-
cuit is the sum of their values for relevant circuit components
(e.g., interconnects when the metric is dynamic power).

The rest of the paper is organized as follows. Sec. 2
presents the basic problem formulation, while in Sec. 3 we
discuss a recent WL model [18] that we use here. In Sec. 4
we present an LR-type method for solving the constrained op-
timization problem in the global placement stage. In Sec. 5
our constraint satisfaction methods in detailed placement are
discussed at length. Section 6 presents experimental results
and we conclude in Sec. 7.

2 Problem Formulation
If the initial placement misses the target delay by a certain

amount, e.g., 20%, it is possible to meet the timing goal by
incremental changes to the placement. Incremental timing-
driven placement will seek to improve the timing property by

replacing cells on critical and near-critical paths to more “ad-
vantageous” positions without significantly impacting the de-
lays on close-to-near-critical paths. As in normal placement,
the placement flow usually consists of a global placement
stage and a detailed placement stage. In the global placement
stage, cells in the critical and near-critical paths are consid-
ered movable (we denote this set of cells as moveC), and their
positions are changed to produce shorter paths. The result-
ing placement often has these movable cells in illegal posi-
tions, i.e., either overlapping with other fixed cells or falling
between rows (in a standard-cell design). Then, in the de-
tailed placement stage, the adjacent fixed cells are incremen-
tally shifted to empty locations to accommodate the moved
cells newly placed into their locations. Finally, a legalized
placement is obtained.

In the global placement stage, the problem can be formu-
lated as a mathematical programming problem. In [8], timing
improvement is obtained by minimizing the timing objective
function:

Ft
�

∑
n j � moveN

D � n j ��� Sa
� n j � (1)

where moveN is the set of nets that are connected to moveC,
D � n j � is the delay of net n j , and Sa

� n j � is the slack of n j . For
unrouted nets, D � n j � can be modeled as in [8]:

D � n j � � Rd
� cl � n j ��� Cap f ��� rc

2
l2
c
� n j �	� rlc � n j � Capc (2)

where Rd is the driving resistance of the net, c (r) is the ca-
pacitance (resistance) per unit WL, Cap f is the total fan-out
capacitance of n j, lc is the wire length from the driving cell to
the most timing critical sink cell, and Capc is the load capac-
itance of that cell. Minimizing Ft can be solved by quadratic
programming as in [8, 13].

If we have a constraint metric C, then a constraint equation
must be added:

Co � ∆Cg � ∆Cd � � 1 � ε � Co (3)

where Co is the value of the constraint-metric function before
replacement, ∆Cg and ∆Cd are the constraint-metric changes
in global and detailed placement, respectively, and ε is the
given fractional upper-bound on the deterioration of the con-
straint metric. In this paper, we consider minimization met-
rics, and thus an increase, in either the optimization (e.g., tim-
ing) or constraint (e.g., power) metric, is deemed a deteriora-
tion. This does not limit the generality of our method, since
for the maximization metrics, we can simply take the negation
of the metrics. In the global placement stage, the constraint
equation can be rewritten as:

∆Cg � ε Co � ∆Cd (4)

In Eqn. 4, we can see that to satisfy the given constraint,
the constraint-metric change in the global stage ∆Cg cannot
take up all the allowable deterioration margin ε Co due to pos-
sible constraint-metric deterioration ∆Cd in the detailed stage.
Since the actual value of ∆Cd is not available prior to the
global stage, we make an estimation of ∆Cd from the deterio-
ration result of C for a tentative purely timing-driven (in gen-
eral, optimization-metric driven) incremental placement with-
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out constraints. In the next section, we give an LR-type ap-
proach to efficiently solve the constrained optimization prob-
lem in global placement.

In detailed placement, cell movements, either moving
fixed cells to make space for movable cells or shifting mov-
able cells into legal positions, will affect delays of some paths.
[8] models the effect of shifting a cell u from position p to p �
with the following timing cost Tu

� p � p ��� :
Tu
� p � p � � � ∆Du

� p � p � ��� 1
Sa
� u � 2 (5)

where ∆Du
� p � p ��� is the delay change of the most critical path

through u when cell u is moved from position p to p � , and is
obtained by differentiating D � n j ��� D � nk � (Eqn. 2) w.r.t. in-
terconnect length lc, where n j � nk are the two critical-path nets
connected to u (see [8] for details); Sa

� u � is the slack of nets
n j and nk connected to u (they will be the same).

For constraint satisfaction, we need to also consider the
constraint-metric change associated with each cell movement.
A similar constraint-metric cost for each movement is given in
Sec. 5. Any cell movement in detailed placement that causes
violation to constraints will be temporarily disallowed until
the constraint quota increases enough at a later stage (due
to other cell movements) to allow the blocked cell move-
ments. Since in global placement, we already leave a mar-
gin of ∆Cd for possible constraint-metric deterioration in the
detailed stage, the number of timing-optimal movements dis-
carded due to constraint violation has been observed to be
very low—less than 4% on the average. Therefore, empiri-
cally speaking, our constraint-satisfying detailed placement is
near-optimal for the timing metric.

For a dynamic power constraint, the constraint function C
is the normalized dynamic power of the circuit:

P �
∑
n j

c � l � n j � psw
� n j � (6)

where l � n j � is the WL of net n j , and psw
� n j � is the switching

probability of net n j
1.

3 Using a New WL Model
A popular WL model is the half perimeter bounding box

(HPBB) model. This model is accurate for 2 and 3 pin nets,
but will underestimate the WL of nets with more pins. Opti-
mizing the HPBB model based WL can be formulated as an
LP problem. Most analytical placers use either the clique or
the star-graph models for WL estimation of nets, which can be
solved faster by quadratic programming than with an HPBB
model (which requires an LP formulation). However, the star-
graph and clique models are only accurate for 2-pin nets, and

1The dynamic power dissipation Pn j of a net n j is Pn j �
0 � 5V 2C f psw, where V is the supply voltage, C is the total load ca-
pacitance of the net, and f is the clock frequency of the circuit. The
total load capacitance consists of two components: the sink gate load
Cgate which is the sum of total input capacitance of fanout gates of
the net and the drain to ground capacitance of the driver; the wire
load Cwire which is cl � n j � . In the placement stage, V , f and Cgate are
fixed. Therefore, for simplicity we can omit these constant terms in
the power constraint function.

tend to overestimate WL when the number of pins is larger
than 2.

In this paper, we use the recently proposed multi-star
model for WL estimation [18]. This model like the standard
star-graph model is amenable to quadratic programming for-
mulations, since the coordinates of each cell contribute in a
closed-form manner to the WL metric, but with a higher ac-
curacy.

The new model is depicted in Fig. 1. All the pins of a net
are divided into sub-groups according to different levels of
bounding boxes in a net. Starting with the outermost pins, the
groups are formed in the following way. Each time, we first
determine the bounding box of all the unselected pins in the
net, then we select one pin on each side of the bounding box
to form a sub-group of pins. If there are more than one pin
on some side of the bounding box, we choose the one that is
furthest away from the net centroid (rationale given shortly).
Let the first group be cells on the outermost bounding box
with the group number increases as we move inwards. For
group m, we denote the star graph WL of the group to be lm.
Then, the estimated WL of net n j is the weighted sum of the
star-graph WL of each group, as follows:

l � n j � � ∑
group m � n j

βm � 1lm (7)

where β � 1 is the non-shared fraction of routing between the
second and first groups.

The star graph WL lm of group m is calculated as:

lm �
∑

ui � group m

 
xi � xc

 �  
yi � yc

 
where � xc � yc � is the coordinate of the net center; xc

� yc � �� 1 � k �"! ∑ui � n j
xi
� yi � . The above non-linear equation can

be approximated by quadratic equations as introduced in
Gordian-L [13]:

lm �
∑

ui � group m

� xi � xc � 2 
x �i � x �c  � � yi � yc � 2 

y �i � y �c  
where x �i, x �c, y �i and y �c are the current values of variables xi,
xc, yi and yc.

Compared

group g1

group g2

Shared interconnect

centroid

Figure 1: The multi-star WL model.

to the standard
star-graph WL
estimation,
which is equiv-
alent to having
a weight of
one (β � 1) for
every group to
determine the
total WL of the

net, Eqn. 7 assigns exponentially smaller weights (βm � 1)
for groups that are closer to the center. This is based on
the observation that, the interconnects belonging to those
groups often share significant parts with interconnects of
outer groups as shown in Fig. 1. It is due to this reason that
if there are more than one node on any side of a certain level
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Circuit matrix vp2 mac32 mac64 %error
routed WL 1.2 4.2 4.8 26.6 0
star-graph 1.8 5.6 5.8 35.0 35.5

HPBB 1.0 3.4 4.0 20.4 -19.0
multi-star 1.2 4.1 5.5 29.0 6.6

Table 1: The estimated WL using the three different WL models.
The unit here is 105µm. The actual routed WL is also listed for com-
parison.

of bounding box, we choose the one that is furthest away
from the net centroid, since the other nodes on that side tend
to share common interconnects with the furthest one. The
value of β is determined by the degree of overlapping among
interconnects of cells across all levels of adjacent bounding
boxes. Experiments reveal that choosing β � 1 � 3 consistently
gives the most accurate routed WL prediction [18].

Table 1 shows total WL estimations using the multi-star
model, the standard star-graph model and the HPBB model
for the TD-Dragon benchmarks, and their percentage differ-
ences (%error) from the routed WL [18]. As shown by the
results, the multi-star model provides a significantly better ap-
proximation of the routed WL than the standard star-graph and
HPBB models.

4 Constraint Satisfaction in Global Place-
ment

Constraint consideration in the global placement stage is
necessary to provide the detailed placer with a raw layout that
is possible to legalize while satisfying the given constraints.

For timing-

maxT T|∆ |
Zone

Tmin

∆C

max

min

C

C

slope=1/w

Forbidden 

Figure 2: The 2-D plane of changes of
power and timing metrics due to cell move-
ments in global placement.

driven incremen-
tal placement
under constraints,
the objective
function Ft is
the same as in
purely timing-
driven placement
(Eqn. 1), while
the constraint
expression is
given in Eqn. 4.
An LR approach

is helpful in solving these types of optimization problems
that have complex constraint equations. After relaxation, we
will get a new unconstrained optimization problem with the
objective function:

Fr
� Ft � w � ∆Cg � � ε Co � ∆Cd �#� (8)

As we discussed in Sec. 2, Co and ∆Cd are the original val-
ues of the constraint metric C and its allowable change in de-
tailed placement, respectively, that are constants in the global
placement stage, Ft is the timing objective function, and ∆Cg
is the constraint metric change in global placement.

The determination of coefficient w is critical. In an LR for-
mulation such as Eqn. 8, to get the same optimal solution as
the original constrained problem, we have to choose w so that
the optimal solution of Eqn. 8 is maximized among all opti-
mal solutions for different w’s (see Sec. 1 for more details).

To efficiently obtain this w value, we need to first determine
the relationship between the change of the timing objective
function Ft and of the constraint metric C w.r.t. w.

Movement of a cell v in global placement will cause
changes in the values of both Ft and C. To depict the effect
of each movement, we can construct a two dimensional plane,
in which the y coordinate is the constraint-metric change, and
the x coordinate is the absolute value of the timing objective
function change (in timing-driven global placement, all cell
movements have a non-positive delay change, and so we use
its absolute value); see Fig. 2.

Cell movements are located in the plane according to
the corresponding constraint metric and timing objective
function change. All movements fall in the movement re-
gion bounded by � Tmin � Tmax � in the horizontal direction and� Cmin � Cmax � in the vertical direction, as shown in Fig. 2,
where Tmin � Tmax � Cmin � Cmax are the minimum and maximum
changes of timing and constraint metrics, respectively, across
all cell movements.

In a purely timing-driven run (i.e., without any con-
straints), all possible movements that result in an improved
timing will be taken. However, when we use the LR objective
function Fr, some movements that have relatively small

 
∆Ft

 
(timing improvement), but large ∆C (constraint metric deteri-
oration) will not be taken. It should be noted that

 
∆Ft

 
and ∆C

caused by the movement of a cell is dependent on the positions
of its adjacent cells. In order to accurately determine which
movements should be taken in the relaxed problem,

 
∆Ft

 
and

∆C of moving a cell should be calculated with all the other
movable cells at their optimal position w.r.t. the relaxed prob-
lem. Thus, for a movement Mu of cell u taken in the purely
timing-driven run, if its ∆C$

∆Ft
$ is greater than 1 � w, Mu will not

be taken for the relaxed problem. This is because the change
of Fr corresponding to these movements is w∆Cg �  

∆Ft
 &%

0;
therefore, comparing two placement results with all the other
movable cells at their optimal positions, the one with Mu will
be inferior w.r.t. Fr to the one that keeps u at its original posi-
tion. Such undesired movements for the relaxed problem fall
into the triangular shaded area in Fig. 2, which is termed the
forbidden zone. The slope of the boundary line of the shaded
region is 1 � w (obtained by setting w∆Cg �  

∆Ft
 � 0, and tak-

ing the ratio of ∆C$
∆Ft

$ � 1 � w).

If we know the values FT
t and ∆CT

g of Ft and ∆Cg, respec-
tively, in a timing-optimal solution with no constraints, then
the optimal solution of the relaxed objective function Fr can
be obtained by removing from FT

t and ∆CT
g the changes in Ft

and Cg caused by movements in the forbidden region, since
these movements will not be taken for minimizing Fr. There-
fore, the optimal value Fopt

r
� w � of Fr is:

Fopt
r � w � � � FT

t ' ∆F f b
t � w �(�*) w �+� ∆CT

g ' ∆C f b � w �(� ' � ε Co ' ∆Cd �+�
(9)

where ∆C f b
g
� w � is the total constraint metric increase due to

the movements in the forbidden zone, and ∆F f b
t

� w � is the total
improvement (reduction) of the timing objective function Ft
obtained from the movements in the forbidden zone. Note that
in the above equation, Ft

� FT
t � ∆F f b

t
� w � and Cg

� ∆CT
g �
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∆C f b � w � .
To obtain the best lower bound on the optimal solution of

the original problem Ft , we need to solve another optimiza-
tion problem: max � Fopt

r
� w ��� , which is tackled by setting the

differentiation of Eqn. 9 w.r.t. w to be 0. The differentiation
of Eqn. 9 can be obtained easily by utilizing a relationship be-

tween d∆F f b
t , w -
dw and d ∆C f b , w -

dw . When w is increased by a small
amount dw, the forbidden region is enlarged, and movements
whose

$
∆Ft

$
∆C is between w and w � dw is added to the forbidden

region. Since dw is small, for these movements
 
∆Ft

 /.
w∆C.

The change d∆F f b
t

� w � of ∆F f b
t

� w � when w is increased to
w � dw is the summation of

 
∆Ft

 
of these movements; simi-

larly, d∆C f b
g
� w � is the summation of ∆C of these movements.

Therefore, we have d∆F f b
t

� w � � wd∆C f b
g
� w � , which implies:

d∆F f b
t

� w �
dw

� w
d∆C f b � w �

dw
(10)

Substituting Eqn. 10 into the differentiation of Eqn. 9, we
can derive the equation for solving w:� ∆CT

g � ∆C f b � w ����� � ε Co � ∆Cd � � 0 (11)

The second-order differentiation of Eqn. 9 is� d∆C f b � w ��� w. Since increasing w will also increase the size
of the forbidden region (note the slope of the boundary of the
forbidden region is 1 � w), ∆C f b � w � will increase accordingly.
Thus, d∆C f b � w �#� w

%
0, and � d∆C f b � w �#� w 0 0. Therefore,

w derived from Eqn. 11 gives the maximum Fopt
r

� w � . After
deriving w, we can solve the relaxed problem (Eqn. 8).
However, we need to test the complementary slackness
condition on the solution to the relaxed problem to see if it is
also the optimal solution to the original problem (see Sec. 1).
It is interesting to note that the complementary slackness
condition ∆Cg � � ε Co � ∆Cd � � 0 is the same as Eqn. 11,
since ∆Cg

� ∆CT
g � ∆C f b � w � . Therefore, with w obtained

from Eqn. 11, the complementary slackness condition is
guaranteed to be met, which means that the optimal solution
of the relaxed objective function Fr with w derived from
Eqn. 11 is also the optimal solution to the original problem
(the basis of this conclusion is explained in the description of
the general LR approach in Sec. 1).

With the above analysis, we establish the following theo-
rems.

Theorem 1 If we set the coefficient w � wo as derived from
Eqn. 11, then the constraint will be met.

Proof: Since the complementary slackness condition ∆Cg �� ε Co � ∆Cd � � 0 is met when w � wo, the total constraint-
metric change after incremental placement ∆Cg � ∆Cd equals
the upper bound deterioration ε Co of constraint C. Therefore,
the theorem is true. 1
Theorem 2 If we set the coefficient w � wo as derived from
Eqn. 11, then it can give the optimal delay objective function
value while satisfying the given constraint.

Proof: For any other coefficient value w � , if w � is smaller than
wo, then the forbidden region will reduce (note the slope of

the boundary of the forbidden region is 1 � w), which means a
decrease in ∆C f b � w � , and thus an increase in Cg. According
to Theorem 1, the total constraint-metric deterioration with
w � wo is equal to the upper bound constraint ε Co. Thus,
with a smaller w � , the constraint is not satisfied. If w � is larger
than wo, then the forbidden area is enlarged and more timing
improvement movements are forbidden, which gives a inferior
delay objective function value compared to wo. 1

The above theorems and analysis hold for general con-
straint metrics. All that is needed is to obtain the closed-form
expression for ∆F f b

t
� w � and ∆C f b � w � , solve Eqn. 11 to obtain

wo, and then perform analytical global placement for optimiz-
ing Fr (Eqn. 8) using w � wo.

Application to timing optimization under power con-
straint: For the dynamic power constraint, the constraint
metric C is the net switching power P. We relabel the pa-
rameters related to C, ∆CT

g , Co, ∆Cd , Cmax and Cmin as ∆PT
g ,

Po, ∆Pd , Pmax and Pmin, respectively. It is observed from ex-
periments that all cell movements are roughly uniformly dis-
tributed in the two dimensional space of Fig. 2 for most cir-
cuits in the 27 benchmarks we use. The possible reason for
this is that though both net switching power and net delay
depend on the WL of a net, the coefficients of the WL are
different for the power and delay functions, and are indepen-
dent of each other. Suppose the WL of a net n j is changed
by ∆l due to a cell movement. Recalling Eqns. 1 and 6, the
power change ∆P is c∆l psw

� n j � , where psw
� n j � is the switch-

ing probability of n j, and c is the unit wire capacitance; the
timing objective function change ∆Ft is Rdc

Sa , n j - ∆l, where Rd is
the driving resistance of the net, and Sa

� n j � is the slack of n j .
It is easy to see that the two terms psw and Rd

Sa , n j - are indepen-
dent of each other, implying the independence between the
two coefficients cpsw

� n j � and Rdc
Sa , n j - .

Furthermore, it is reasonable to assume a uniform distribu-
tion of psw. In our experiments, we have tried two different
assignments of psw, random assignment (i.e., uniform distri-
bution) and an assignment that sets psw of a net as a linear
function of the largest distance of the net from any input in
order to model the increasing number of glitches on nets that
are further from circuit inputs. The results of these two assign-
ments are virtually the same for all circuits. Thus, assuming
a uniform distribution of psw is a good approximation to the
actual psw distribution. For the Rd

Sa , n j - term in ∆Ft , since the
movable cells in timing-driven placement are cells on critical
or near-critical paths, the slacks Sa

� n j � are alike for all nets on
these paths, while Rd is usually uniformly distributed; this im-
plies that Rd

Sa , n j - is uniformly distributed across all nets. There-
fore the movement of a cell can result in any metric change
point � ∆Ft � ∆P � in the 2-D space of Fig. 2 with equal prob-
ability. Thus, the resulting distribution of movements in the
above space is roughly uniform.

Because of the uniform distribution, the number of move-
ments m �  

moveC
 
(note that

 
moveC

 
is determined a-priori,

where recall from Sec. 2 that moveC is the set of movable
cells in the global placement) that fall in a unit area in the
movement region of the two dimensional space of Fig. 2 is
m � A, where A � � Tmax � Tmin �2! � Pmax � Pmin � is the area of
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the movement region in the 2D-space shown in Fig. 2. Thus,
the density of movement in the movement region is m � A. For
a small region dxdy at � x � y � in the movement region, there
are on the average � m � A � dxdy movements with a constraint
metric change of y and a delay metric change of x. There-
fore, the total power increase ∆P f b � w � due to movements in
the forbidden zone thus is:

∆P f b � w � � 343
f orb 5 zn 5 y � m 6 A � dxdy � � m 6 A � 3 Pmax

y 7 0

3 wy

x 7 0
y dxdy

(12)

Similarly, the total improvement of timing objective func-
tion Ft given by the movements in the forbidden zone is:

∆F f b
t

� w � � � m � A �98 Pmax

y : 0
8 wy

x : 0
x dxdy (13)

Using Eqns. 12 and 13 in Eqn. 11 and solving it, we get:

wo
� 3A � ∆PT

g � � ε Po � ∆Pd �#�#� � mP3
max � (14)

The parameters needed for calculating the value of A are
Tmin � Tmax � Pmax and Pmin. It should be noted that the accurate
value of these four boundary parameters are unknown before
we actually solve the relaxed problem, since by definition, we
need the optimal positions of cells for the relaxed problem to
determine ∆Ft and ∆P for each movement. However, we can
make an estimation of the boundary values using the cell posi-
tion after the global placement stage of a purely timing-driven
run. Experiments show that the variation of the estimated val-
ues from the actual values obtained after solving the relaxed
problem is within 5% for the benchmarks we use, which is
acceptable. However, if the difference is large, we can use an
iterative way to obtain accurate values as follows: (1) calcu-
late wo using the estimated value; (2) then solve the relaxed
problem, and obtain the optimal cell positions; (3) after that,
recalculate the four parameters using the optimal positions;
(4) finally, recalculate wo, and repeat step (2). Since solving
the global placement problem is fast (recalling that we are us-
ing quadratic programming), we can get very accurate values
in reasonable run time.

From the tentative purely timing-driven run, we can also
obtain the values of other parameters for Eqn. 14: ∆PT

g � Po and
∆Pd . If the resulting placement from this tentative run itself
already satisfies the constraint, no more processing is needed;
otherwise we use these parameters to determine coefficient
wo, and perform incremental global placement by using the
relaxed objective function Fr (Eqn. 8) with w � wo. Since
for optimizing the objective function Fr, the movements in the
forbidden zone will no longer be taken, we cannot directly use
the power change value ∆PT

d of the purely timing-driven run
as the ∆Pd value. ∆Pd should be smaller than ∆PT

d , because
fewer movements are taken when optimizing Fr than when
optimizing Ft without any constraint. Thus, it is reasonable to
set ∆Pd to be:

∆Pd
� ∆PT

d � � 1 � A f b

A
� (15)

where A f b
� � wP2

max ��� 2 is the area of the forbidden region.
The above discussion and Theorems 1 and 2 lead to the

following result.

Theorem 3 For the problem of timing optimization under dy-
namic power constraint, if we set the coefficient w � wo as
that determined in Eqn. 14, then optimizing Fr (Eqn. 8) with
w � wo gives the optimal value of the delay objective function
Ft (Eqn. 1) while satisfying the power increase upper-bound
constraint ∆Pg.

5 Constraint Satisfaction in Detailed
Placement

The technique
C11 C12 C13 C14 W1

W2C22C21

C21 C11 C12 C13 C14

C22

C24

C24 W2

Row3C C31 C32 33 W3

Row3C C31 C32 33 W3

vertical
arcs

W21
Row2

Row1

(a)

Row1

Row2

S
T

u
v

horizontal arcs

u

(b)

Figure 3: (a) General n/w flow graph and
flows for legalizing placement of cell u. Ci j’s
are the fixed row cells, u and v are the moved
cells placed in global placement, Wi j’s are
the available white space (WS). Two alterna-
tive legalizing flows are shown in solid and
dashed lines respectively. (b) The resulting
position corresponding to the solid flows in
(a), which legalize u. White spaces in Row 1
and Row 2 are decreased. Similarly, follow-
ing the alternative dashed flow will take up
the white space of Row 3.

in [8] models de-
tailed placement
as a min-cost net-
work (n/w) flow
problem. Fig-
ure 3 shows the
general structure
of the n/w graph.
The vertical arcs
model the move-
ment of their
start cells into
adjacent rows,
and the capacity
of each such arc
equals the start
cell width. The
horizontal arcs
model the hori-
zontal movement
of their start
cell in the arc
direction, and
their capacities
are the maximum
distances the start
cells can move
horizontally. This

maximum distance for row Ri is determined as the maximum
of the widths of the illegally placed cells that can enter Ri
and the widths of cells in Ri ; 1 and Ri � 1. This finite capacity
is chosen for horizontal arcs in Ri in order to balance cost
accuracy and flexibility in cell movement. The timing cost
of an arc is calculated using the function Tu

� p � p � � described
in Eqn. 5, divided by the capacity of the arc, where u is the
start cell of the arc, p is the original position of u and p � is
the new position of u when a full flow passes through the
arc (e.g., for vertical arcs, p � is the position located in the
adjacent row with the same horizontal coordinate as p; for
horizontal arcs, p � is at the maximum distance a cell can
move from p in the same row). The source (S) has arcs to the
moved cells that were placed in global placement, and are
in illegal positions. Available white spaces in each row are
connected to the sink (T ). Thus, as shown in Fig. 3 when
we send a flow from S to T via the illegally-placed cells, we
are moving them to their adjacent rows and creating space
for these new incoming cells by shifting other cells in the
rows towards available white spaces. Therefore, performing a
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min-cost flow achieves placement legalization with minimum
deterioration of the objective function. The advantage of this
method is solving min-cost legalization problem with a time
efficient continuous optimization method (n/w flow), despite
the fact that this problem is an integer programming problem;
see [8] for further discussion on these issues.

The min-cost n/w problem is solved using the Simplex
method [9]. The Simplex method starts from an initial non-
optimal flow. It keeps determining negative cost cycles in the
n/w flow graph and augmenting flows in these cycles, thereby
improving the total cost. The process stops when there are no
more negative cost cycles or no more flow can be augmented
in any negative cycle (due to one or more arcs in the negative
cycle being saturated in the direction of the cycle or empty in
the opposite direction). In the classic Simplex method that we
use, negative cycles are augmented in order decreasing cost
improvement (i.e., cycles with larger negative cost magnitudes
are augmented before cycles with smaller negative cost mag-
nitudes).

For a purely timing-driven detailed placement, we only
need to consider the timing cost of each arc. When a con-
straint is added, we need also to know how much the con-
straint metric is changed when augmenting flows. There-
fore, a similar constraint metric cost is calculated for each
arc, which equals the constraint-metric change when a cell
is moved according to this arc. For dynamic power, if a cell
u is moved from position p to p � among an arc ak, the cost of
this movement is:

∆Pu
� p � p � � � ∑

u � n j

c � � lp < � n j ��� lp
� n j �#� psw

� n j �
Recall that c is the unit length wire capacitance, psw

� n j � is the
switching probability of net n j, and lp

� n j � is the WL of net j
with cell u at position p. The above equation gives the total
power change of all the connected nets to cell u when cell u is
moved from p to p � , since only these nets will be affected by
the movement of cell u. Then the unit flow power cost of the
arc ak is ∆Pu

� p � p � �#� cap � ak � .
We thus have two costs for each arc for timing optimiza-

tion under power constraints (in general, we can have multiple
costs, one for the optimization metric and the others for mul-
tiple constraint metrics). Thus, for each negative timing cost
cycle, we can also calculate the unit flow constraint metric
cost of the cycle. To meet the constraint, the total constraint
metric cost (deterioration) should be no larger than the avail-
able margin after global placement ε Co � ∆Cg.

If we find that augmenting a single unit flow in one nega-
tive cycle will cause a constraint violation, we disallow flow
augmentation in this cycle by putting it into a forbidden list.
However, when this situation is not true anymore (e.g., some
subsequent flows cause a decrease of the constraint metric),
we free cycles from the list that will not causes a constraint
violation due to a unit flow through them. This constraint-
satisfaction technique is essentially a greedy method, i.e., we
find the cycle with largest negative timing cost, check if aug-
menting flow in the cycle will cause constraint violation, aug-
ment flow in the cycle if not, then proceed to the next cycle
with the next largest negative timing cost and so forth. Since

obtaining the timing-optimal flow under constraints of total
cost of other metrics in a network flow graph is typically a
non-convex problem, solving it with a greedy method is sub-
optimal. However, our experiments with power as the con-
straint show that among all cycles with negative timing cost,
only about 4% are disallowed in our technique due to viola-
tion of the power constraint. This small number is due to the
reasonable power deterioration margin ∆Pd we leave for de-
tailed placement in the global placement stage (see Eqn. 15).
Thus from the above empirical evidence, we can conclude that
our constraint-satisfaction technique in detailed placement is
near-optimal.

6 Experimental Results
We use three benchmark suites in our experiments: 1) the

TD-Dragon suite of [5], 2) Faraday benchmarks from [10]
and 3) TD versions of the IBM benchmark suite of [8, 12].
All benchmarks are initially placed by Dragon with WL as
the objective metric. The switching probability psw of each
net is assigned between 0 = 1 and 1 as a linear function of the
longest distance of the net from an input; besides the current
to new value switching, this is an attempt to model net switch-
ing power due to glitches which increase as the distance of a
net from an input. Similar results were obtained for a uniform
distribution of psw between 0.1 and 1 among all the nets. Note
that these values of psw are relative, not absolute, estimations
of switching activity; thus, for example, if the actual switch-
ing probability of each net is 1/10 of our psw assignments, the
results in terms of percentage power deterioration will be ex-
actly the same. We ran our programs on Linux and Windows
XP Pentium IV machines with up to 1GB of main memory,
and almost the same program execution speeds.

In Table 2, we give the characteristics of the benchmark
circuits as well as the purely timing-driven incremental place-
ment results. The average power increase after purely timing-
driven placement is about 8.7%, while the average delay im-
provement is 17.3%. Table 3 shows the results of constrained
timing-driven incremental placement with a power constraint
of 3% (upper bound of net switching power increase is 3%). It
can be seen that the constraint is met for nearly all the bench-
marks with an actual average power increase of only 2.1% (a
75% relative decrease in power deterioration compared to the
unconstrained case) and a resulting average timing improve-
ment of 12.4% (a 28% relative decrease in timing improve-
ment compared to the unconstrained case). Only one circuit
misses the constraint by 0.1%, probably due to the small in-
accuracy in the power cost calculated in the n/w flow based
detailed placer.

To show the effectiveness of our LR-type global placement
method, we also give results in Table 3 for coefficient values
w in the relaxed objective function of Eqn. 8 that are slightly
different from the optimal value wo (Eqn. 14); the values cho-
sen are 1 = 1wo and 0 = 9wo. Timing results for wo are consis-
tently better than those of the slightly changed coefficients
with the exception of only two circuits, for which the 0 = 9wo
coefficient is no more than 0.3% better. However, the 0 = 9wo
coefficient choice fails to meet the constraint for 4 circuits.
The efficacy of our detailed placer is validated by small de-
teriorations in the timing results when going from global to
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Ckt # of Power Init. Init. pl %∆T %∆T %∆P CPU
cells (10 > 8 delay runtime (global) (secs)

mw) (ns) (secs)
ibm01 12.5K 1.3 2.2 402 21.0 15.0 -10.5 78
ibm02 19.3K 5.8 1.8 864 30.5 24.2 -11.4 76
ibm03 22.8K 6.0 1.2 1283 32.3 28.5 -9.4 169
ibm04 27.2K 10.2 1.7 1501 28.1 24.1 -11.6 177
ibm05 28.1K 14.1 1.1 1594 21.2 17.9 -6.9 182
ibm06 32.3K 9.1 2.6 1800 25.9 21.0 -9.1 223
ibm07 45.6K 14.0 2.3 2216 18.0 13.1 -8.0 249
ibm08 51.0K 14.3 1.1 5973 29.2 27.1 -6.2 248
ibm09 53.1K 18.6 3.0 4032 17.4 13.3 -10.7 349
ibm10 68.7K 17.0 2.2 4578 20.2 16.2 -9.9 352
ibm11 70.2K 13.2 2.0 4415 21.2 14.4 -9.4 431
ibm12 70.4K 13.5 5.4 4850 19.1 13.2 -6.9 301
ibm13 83.7K 22.4 1.8 5189 22.1 18.3 -7.1 312
ibm14 147K 53.2 3.0 7432 19.5 14.8 -8.5 469
ibm15 161K 63.6 3.8 7629 22.6 18.4 -3.8 488
ibm16 183K 62.0 3.8 7714 24.6 18.5 -4.4 596
ibm17 185K 59.6 4.5 8259 30.7 27.1 -2.4 684
ibm18 210K 103.4 2.0 9454 36.2 33.4 -3.7 762
Avg. 4399 24.5 19.9 -7.8 342
DMA 11.7K 1.4 0.4 384 25.1 14.4 -13.8 58
DSP1 26.3K 1.4 0.9 1527 24.0 16.1 -10.8 72
DSP2 26.3K 1.4 0.8 1602 23.0 15.0 -9.2 90
RISC1 32.6K 7.4 1.1 1952 21.8 16.2 -9.0 108
RISC2 32.6K 7.9 1.3 1906 19.9 15.0 -9.3 116
Avg. 1474 22.5 15.4 -10.4 89

matrix 3.1K 2.8 4.9 70 9.7 7.1 -9.6 80
vp2 8.7K 4.4 5.1 161 10.8 6.0 -9.9 110

mac32 8.9K 7.1 3.8 184 13.7 9.3 -8.1 102
mac64 25.6K 18.5 7.7 1364 13.1 10.2 -6.9 135
Avg. 445 11.6 8.1 -8.7 107

Overall 3271 22.3 17.3 -8.4 260
Avg.

Table 2: Results for timing-driven incremental placement with-
out constraints. All circuits are initially placed by Dragon, a WL-
optimizing placer. The size, initial power and delay of each bench-
mark are given, followed by the % change of delay after incremental
global placement (%∆T(global)), and final % changes in delay (%∆T)
and power (%∆P) after incremental detailed placement.

detailed placement—an absolute change of 5% for the uncon-
strained problem (Table 2) and an absolute change of 3.4% for
the power-constrained problem (Table 3).

Since in power-constrained timing-driven incremental
placement, we need a test run of purely timing-driven place-
ment to obtain some characteristic parameters about each
benchmark, our average run time is about 2.8 times that of
purely timing-driven placement. However, our average run
time for the power-constrained timing-driven problem is still
only 22% of the average run time of the Dragon placer.

7 Conclusions
We presented a novel and efficient algorithm for solving

the constrained incremental placement problem. We employ
an LR-type method, and make use of the relationship be-
tween the optimization metric and the constraint metric to ef-
ficiently solve the optimal constraint-metric coefficient selec-
tion problem. We also prove the optimality of our constraint-
satisfying global placer. In our network-flow based detailed
placer, the constraint metric change is dynamically monitored,
and movements that cause constraint violation are temporar-
ily disallowed until the constraint-metric deterioration quota
increases sufficiently. We applied our general methodology
to the power-constrained timing-optimization problem. Re-
sults show that: (a) our method can satisfy explicit and tight
constraints without significantly sacrificing the optimization
metric, and (b) our choice of the constraint-metric coefficient
provides the best improvement for the optimization metric,
thus empirically validating our theoretical results.

Ckt %∆T %∆T %∆P runtime %∆T %∆T
(global) (secs) (0 ? 9wo) (1 ? 1wo)

ibm01 15.8 11.3 -2.9 277 10.4 11.0
ibm02 19.4 16.0 -2.8 331 15.9 15.6
ibm03 20.7 18.0 -1.4 388 17.9 17.5
ibm04 17.0 14.7 -3.1 612 Fail 13.8
ibm05 14.6 11.2 -3.0 594 10.1 10.3
ibm06 17.4 14.8 -1.4 528 14.9 14.5
ibm07 11.5 8.9 -1.6 714 8.9 8.4
ibm08 28.5 25.1 -2.5 877 24.5 24.6
ibm09 12.3 8.3 -1.8 902 7.3 7.5
ibm10 13.4 10.7 -2.9 1148 Fail 9.4
ibm11 15.3 10.1 -2.9 1024 9.2 10.0
ibm12 13.9 9.8 -2.5 953 9.7 9.7
ibm13 17.5 12.9 -1.4 833 12.9 12.1
ibm14 10.3 8.4 -0.7 1071 9.4 8.1
ibm15 19.6 15.6 -2.9 1248 Fail 14.8
ibm16 19.7 17.0 -2.4 1306 16.6 16.4
ibm17 29.7 27.8 -2.4 684 27.8 27.8
ibm18 27.5 25.0 -2.5 1541 23.8 24.1
Avg. 18.0 14.7 -2.3 835 12.2 13.7
DMA 9.1 5.1 -2.7 414 Fail 4.2
DSP1 16.4 12.2 -2.2 415 11.8 11.2
DSP2 16.5 13.9 -3.0 712 10.9 13.0
RISC1 14.8 10.6 -2.3 538 10.7 9.7
RISC2 15.1 9.9 -2.0 538 9.3 9.3
Avg. 14.4 10.4 -2.5 515 8.6 9.5

matrix 7.4 3.4 -3.0 482 1.6 2.5
vp2 4.8 1.6 -1.2 286 1.6 1.4

mac32 9.6 5.8 -2.5 476 4.9 4.9
mac64 10.2 7.5 -1.1 573 7.5 7.4
Avg. 7.9 4.6 -2.0 454 4.0 4.1

Overall 15.8 12.4 -2.1 719 10.3 11.5
Avg.

Table 3: Results of timing-driven incremental placement under a
power constraint of 3% deterioration. The last two columns show
results for constraint-metric coefficients in the relaxed objective func-
tion that are slightly different from the theoretical optimal choice wo.
“Fail” means that the final placement did not satisfy the given con-
straint.
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