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Abstract 

VLSI systems in the nanometer regime suffer from 
high defect rates and large parametric variations that 
lead to yield loss as well as reduced reliability of 
operation. In this paper, we propose a novel memory-
based computation framework that exploits on-chip 
memory for reliable operation by transferring activity 
from a defective or unreliable functional unit to the 
embedded memory. This allows the die to run at a 
reduced performance level instead of being 
completely discarded or being throttled (in case of 
variations). We show that the proposed method 
improves yield and reliability in a superscalar out-of-
order processor by tolerating defective functional 
units and allowing dynamic thermal management. The 
simulation results show that it entails only a small loss 
in performance (average 1.8%) at the cost of 9.5% of 
area overhead required with hardware duplication. 

I. INTRODUCTION 
Although technology scaling provides the 

capability to integrate billions of transistors in a 
modern processor, it gives rise to important issues 
such as high defect rate and variability-induced 
reliability concerns [1]. Increasing defect rate and 
device parameter variations in sub-90nm technology 
regime leads to reduced yield [2]. Moreover, increased 
power density in modern high-performance 
microprocessors (~100W/cm2 for 50-nm technology 
[3]) leads to an overall increase of the processor 
temperature due to the limited cooling capacity of the 
package. Moreover, the power density varies across 
the chip depending upon the functionality of the 
circuit block. Typically power density of a cache is 
much less compared to the execution unit (e.g. integer 
ALU).  In order to adapt to both manufacturing 
defects and Process-Temperature-Voltage (PTV) 
induced parameter variations, an effective solution is 
to develop a system which can dynamically detect and 
correct defect and variation induced failures. For 
example, thermal management under temperature 
variation can be addressed using a Dynamic Voltage 
Frequency Scaling (DVFS) scheme [4], which can 

dynamically adjust operating conditions (i.e. voltage 
and frequency) to operate under a temperature and 
power envelope (thereby achieving high reliability). 
Such a system, however, incurs high performance loss 
(due to system-wide voltage/frequency scaling) and 
large hardware overhead. In this paper, we propose an 
architecture-level solution for improving processor 
yield and reliability of operation using memory based 
computation. The proposed computation framework 
allows on-demand transfer of activity from functional 
units of the processor such as ALU to the embedded 
memory of the processor and thus compensates for 
hardware defects as well as reduced reliability of 
operation in a functional unit under parametric 
variations.  

The key idea is to realize the functionality of 
different execution units in a processor, such as adder 
or multiplier using on-chip memory, which acts as a 
reconfigurable computing resource.  We demonstrate 
that on-chip cache in a processor can be used to  

 
Figure 1: Flow chart showing memory 

based computation framework. 
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perform computation on demand by storing the results 
of Boolean functions as a look-up table (LUT). The 
portion of the embedded memory dedicated to LUT 
implementation of the different functions can be 
traded off with the performance loss which is however 
within tolerable limits due to the high locality of 
reference across different clock cycles. A small 
hardware overhead (which we call as glue logic) is 
required for forming the effective virtual and physical 
addresses to access the cache and the main memory 
respectively.  
The paper makes the following contributions:  
1. It proposes to use the on-chip memory of a 
processor to realize the functionalities of different 
execution units.   
2. It ensures correct operation of the processor in 
case of Process-Temperature-Voltage induced 
parametric variations by transferring the activity of 
the functional units to the memory. 
3.It helps in salvaging the processors with defective 
functional units by allowing memory based realization 
of their functionalities and therefore improves the 
yield in a “go-no-go” situation.   

II. MEMORY BASED COMPUTATION: 
OVERVIEW 

Memory-based look up table implementation is 
common in case of FPGAs, which essentially consists 
of two-dimensional array of small LUTs and 
programmable switching matrix. Memory based 
computation has also been explored in the context of 
Digital Signal Processing (DSP) domain as illustrated 
in [7]. The idea is to circumvent the classic Von-

Neumann bottleneck [7] by moving the data to the 
memory and doing the computation in the memory 
itself. The advantage of such a technique is some 
iterative tasks meant for running on the CPU can now 
be run in the memory itself, thus increasing the 
throughput. A similar approach has been followed in 
[9], where the authors have proposed a LUT based 
implementation of computation intensive DSP and 
image applications such as DCT and IDCT. The on-
chip cache is used for realization of the LUT. 
However, the method as described in [9] entails a 
significant design overhead due to incorporation of 
computing elements and intermediate decoders in the 
cache memory. Although memory based computation  

 
Figure 2: Integration of memory-based 

computation with dynamic pipeline. 

Figure 5: Implementation of memory based 
addition using carry-select adder. 

 
Figure 3: Formation of virtual and physical 

addresses. 

 
Figure 4: Arrangement of addition results in 

cache and main memory. 
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has been explored before, the proposed computation 
framework has two major differences from the 
previous works: a) it tries to perform most common 
operations in a system (such as addition, 
multiplication etc.) and not specific iterative tasks; b) 
it addresses improvement in yield and reliability; c) it 
preserves the advantage of high device integration 
density of embedded caches. On-chip memory in 
modern processors can be utilized to realize logic 
function apart from being used as a stand-alone 
storage element for data and/or instructions. In order 
to explain the operation of the proposed methodology, 
we will try to answer the following four questions.  
a) How can we perform computation in memory?  
In this work, we propose implementing logic and 
arithmetic operations in the on-chip cache, which 
provides easy dynamic reconfigurability (which 
means the same cache memory can be used as a look-
up table for add and multiplication operations in 
different cycles). We assume the result of an operation 
is stored in physical memory and fetched on-demand 
to the on-chip cache. Clearly, the allocation of data in 
the table and its intelligent processing is essential to 
reduce the amount of storage. 
b) Which functions should we compute in memory?  
Functions which have relatively small number of 
inputs and outputs are ideally suited for memory 
based computation. Arithmetic operations such as 
addition and multiplication often involve large 
operands. However, we note that such operands can 
be suitably bit-sliced and the memory based  

 
computation can be executed on these bit-sliced 
operands. This also reduces the amount of storage 
required for this framework.  
c) When do we perform memory based computation? 
A memory based computation framework will not be 
able to replace a logic unit in terms of its performance. 
However, in the scenario of a permanent defect to a 
functional unit or when the functional unit operates 
under thermal stress, the memory may be used to 
share a workload from the functional unit [6].  
b) What modifications we need to incorporate in 
the memory?  
    The requirements for the embedded memory to 
support computation can be divided into two classes. 
These are: 1) efficient look up and data storage 
algorithm that integrates seamlessly with the 
conventional embedded memory addressing scheme 
2) the functional requirement for the embedded 
memory to have low access latencies. Moreover, the 
algorithm for fetching the data from the main memory 
should be capable of exploiting the temporal 
correlation of the data for the same operation across 
different clock cycles.    

III. ACTIVITY TRANSFER IN A 
PROCESSOR 

The proposed memory based computation framework 
was applied to realize the functionality of the integer 
execution unit, which is extremely critical in an Out-
of-Order Superscalar processor pipeline. An overview  
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Temp Control Scheme With Extra Memory
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Fault Recovery Scheme Without Extra  Memory
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Fault Recovery Scheme With Extra Memory
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Figure 6: Performance overhead for temperature control and fault tolerance schemes. 
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of the proposed scheme has been shown in Fig. 1.  In 
case of permanent failure of a functional unit or when 
the temperature of a particular functional unit such as 
an ALU adder or a multiplier is above a threshold 
limit (100°C), the adder or the multiplier of the ALU 
is bypassed followed by memory based computation 
of these functions. Once a need for bypassing the 
normal execution unit has been detected the processor 
will need to issue an indication for the OS to load the 
result tables for that particular operation in a section 
of the main memory. The OS returns the pagebase 
address where the results for the look up table 
realization of the operation are being stored in the 
main memory. This pagebase address will be used for 
further access to the main memory to load the result 
tables to the on-chip cache memory. The pagebase 
address is used to form the physical address required 
to access the main memory, the on-chip cache being 
accessed with a virtual address. The instruction after 
being issued from the issue queue is redirected to the 
address generation unit (shown by bold arrows in 
Fig.2) for calculation of effective address, which is 
used to access the result of the operation.  
A. Formation of effective addresses 
       Two most frequent arithmetic integer operations, 
addition and multiplication were chosen for 
realization using memory based computation 
procedure. The multiplication operation was 
implemented using repeated additions. The following 
section discusses the formation of virtual and physical 
addresses required to retrieve the addition results from 
the cache or the main memory. The formation of 
virtual and physical addresses is shown in the Fig. 3. 
Let us consider the addition of two 32 bit long 
operands X and Y. Each of the operands can be seen 
as a regarded as a combination of four 1 byte operands 
(X0, Y0), (X1, Y1), (X2, Y2) and (X3, Y3).  The 
addition result for such 1 byte operands can be stored 
in the memory in the form of tables. For the first 
access, let us consider that the operands are X0 and Y0. 
As shown in Fig. 3, the virtual address to access the 
L1 cache is formed with the operand X0 forming the  
 

 
tag section for the virtual address. The index for the 
virtual address is formed by ‘X0 mod L1set’ operation 
where L1set is the number of sets present in the L1 
cache. The other operand is used as the block offset 
section for the virtual address. The proposed 
addressing scheme thus circumvents the 
synonym/aliasing problem common for virtually 
indexed virtually tagged addressing by having one of 
the operands present in the tag portion of the virtual 
address. The physical address required to access the 
main memory tables is formed with one of the 
operands serving as the page offset. The page base 
address stored previously from the OS is concatenated 
with the page offset to form the complete physical 
address that selects a line of a page in the main 
memory. The selected line contains the addition 
results of the operand in the page offset with all 
possible 1 byte operand. Since we are considering 
only addition as the fundamental operation, the 
addition LUTs loaded in the main memory have one 
page base address. This single pagebase address 
eliminates the overhead of having a Page Table or 
Translation Look-Aside Buffer (TLB). In the 
proposed scheme, a virtually indexed virtually tagged 
cache removes the need for virtual to physical address 
translation on each cache access. Such a translation is 
required only for accessing the main memory.  
B. Cache and Memory Organization 
The cache and the memory organization for storage of 
addition results are shown in Fig. 4. The page loaded 
in the main memory contains the addition result of all 
8 bit operands and the respective carry outs. Each line 
of the page in the main memory contains the sum of 
one 8-bit operand (let X0) with all 8 bit operands (Y0, 
Y1 ..YN). Two such sets are present, for input carry is 
zero and one. The page offset is used to access the 
addition results for both cases of the input carry. The 
input carry is then used to select the proper addition 
results. On a cache miss, the memory line containing 
the addition results of one of the operands (X0) is 
brought into the cache. The second operand (say Y0) 
which forms the block offset section of the address is 
used to access the result of addition for the two 
operands (X0 and Y0). The hierarchy of cache access 
is shown in the Fig. 1. The L1 cache is accessed with 

Table I: Area overhead for glue logic
 Area (µm2) Total Area 

(µm2) 
32 bit Shifter 11280 
32b  Priority 

Encoder 
3541 

32 bit Comparator 4503 

 
19324 

Area overhead for duplicated functional 
unit 

32 bit Adder 10135 
16 bit Multiplier 194420 

 
204555 
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Figure 7: Temperature profile for ALU unit. 
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the L1 virtual address; miss on the L1 cache triggers 
an L2 cache access with the L2 virtual address. A hit 
on the L2 cache causes the return of data to the 
reservation station or the integer register that is 
supposed to receive the result of addition. The data is 
also written into L1 cache and the valid bit is set on a 
successful write operation. If a free write location is 
not found in the L1 cache, then the data present in that 
location is evicted from L1 and written to L2 cache. 
The Least Recently Used (LRU) policy is followed as 
a replacement policy for L1 eviction scheme.   
C. Memory based addition procedure 
   A scheme based on carry-select addition of two 32 
bit operands using memory based computation is 
shown in the Fig. 5. The 32 bit operands are divided 
into 8 bit operands and for each set, the sum is looked 
up from the cache using the input carry as select 
signal. Thus the entire addition procedure is 
completed in two steps, a memory look up and 
subsequent carry select addition using the 8 bit 
operand addition results.  
 D. Implementation of the multiplier 
   The proposed scheme for memory based 
computation can be extended to integer multiplication 
as well. The fundamental operation for implementing 
an integer multiplier is addition and the simplest 

implementation for the multiplication of two integers 
can be realized by checking the multiplier bits for zero 
or one. The shifted multiplicand is added to the partial 
product to obtain the new value of partial product. The 
shifted value of the multiplicand is obtained by a 
combinational shifter network. The addition of the 
partial product and the shifted multiplicand is however 
realized by memory based addition operation. Some 
other implementations for the multiplier have also 
been investigated such as the Booth Radix 2 and 4 as 
well as using the look-up table based implementation 
described in [8]. However, the simplest multiplication 
algorithm has been found to offer comparable 
performance at a lower design overhead.  

IV. TEST SETUP & RESULTS 
i) Test Setup: The proposed scheme has been validated 
on an Out-of-Order Superscalar processor architecture 
using the Simplescalar Tool Set Version 3.0 [10]. The 
baseline configuration includes an 8-way issue 
processor with 6 integer ALUs and 2 integer mul/div 
units. The virtually addressed cache memory includes 
2 way 8KB L1 cache with 1 cycle latency and a 4-way 
64KB L2 cache with 6 cycle latency, both of which 
have LRU replacement policy. The main memory 
page allocated for storing the results of addition  
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Figure 9: Power results with and without memory based computation framework in case of  
a) 2 adders 1 multiplier being faulty and b) 4 adders and 1 multiplier being faulty. 
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Figure 8: Performance results with and without memory based computation framework in case of 
a) 2 adders 1 multiplier being faulty and b) 4 adders and 1 multiplier being faulty. 
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instruction is of size 64KB. The latency for accessing  
the main memory is taken to be 100 cycles for the first 
access and 4 cycles for inter chunk access. We have 
considered two different scenarios, i) when the 
memory based computation is used for improving the 
reliability of operation under temperature variation, ii) 
when the proposed computational framework is used 
to completely replace few functional units that have 
been rendered inoperative. Simplescalar was modified 
to incorporate the proposed activity transfer scheme 
and the above scenarios were then simulated for 
different Spec2000 Benchmarks [5]. For each scenario 
mentioned above, the performance loss was estimated 
when i) an extra on-chip memory is used for LUT 
implementation ii) when the existing caches are used.  
ii) Results:  From the performance results presented in 
Fig. 6, we note that when the proposed computational 
framework is used for temperature management with 
an extra on-chip memory being used for LUT 
implementation, the average increase in Cycles-Per-
Instruction (CPI) is only 1.58%. When existing on-
chip memory was used, the performance degraded 
more (3.89%), since it led to more capacity misses. It 
is important to note that in DVFS scheme [4], the 
performance penalty is over 10%. Thus, the proposed 
scheme has significant savings in performance over 
DVFS for temperature management. Figure 7 shows 
the temperature profiles of the ALU unit for a given 
benchmark (perlbmk).  As seen in Fig. 7, the 
uncontrolled temperature profile tends to increase 
more even after it has crossed the temperature 
threshold. However, in the proposed activity transfer 
scheme the ALU operation is bypassed, thus allowing 
the ALU temperature to decrease. We have also 
validated the effectiveness of the proposed scheme for 
improving yield assuming hard defects in the 
execution units. The results in Fig. 6 correspond to the 
case where 2 integer adders and 1 integer multiplier 
are considered to be defective and their activity is 
migrated. The performance overhead is only 2% in 
case of a separate flexible memory and 4.47% in case 
of using the existing cache for LUT implementation. 
Configuration 1 and 2 in Fig. 8 (a) and (b) correspond 
to the case when i) 2 integer adders and 1 integer 
multiplier are defective and ii) 4 integer adders and 1 
integer multiplier are defective respectively. As 
observed from Fig. 8(a), the performance overhead for 
a faulty processor with configuration 1 is 13.27%. In 
case of configuration 2, the processor suffers a higher 
performance overhead (81.2%) due to more number of 
defective units. However, when the proposed scheme 
is incorporated in the processor architecture, the loss 
in performance is minimal (1.71% and 16.4% 
respectively). The smaller performance overhead for 
the proposed computation framework is due to the 
correlation that exists among the operands thereby  
 

 
reducing the number of L2 and main memory accesses.  
The proposed activity transfer scheme requires 
additional hardware which involves a 32 bit 
comparator for comparing the operands before 
memory based addition and multiplication procedures.  
Additional hardware required for multiplication 
includes a 32 bit priority encoder and a 32 bit shifter 
for obtaining a multiplicand of proper weight. Table I 
compares the hardware overhead for the proposed 
scheme against the complete duplication of the entire 
functional units. The additional hardware requirement 
for memory based computation is only 9.5% of the 
duplicated functional units. We have also noted the 
power overhead due to the proposed framework. The 
results were collected using Wattch Tool Set Version 
1.0 shown in Fig. 9(a) and (b).  From the results we 
note that the proposed scheme incurs a power 
overhead of 10.74% and 27.15% for configuration 1 
and 2 respectively.  

V. CONCLUSION 
We have presented a novel memory based 
computation framework that will enable modern 
processors for on-demand transfer of computation 
from functional unit to memory. The principal idea is 
to use embedded cache of a processor as LUT based 
computing resource. The proposed scheme can be 
effectively used to improve manufacturing yield and 
temporarily bypass the activity in functional units 
under time-dependent local variations, thus providing 
an efficient solution to dynamic thermal management. 
We show that the benefits of memory-based 
computation come at the expense of small loss in 
performance and low hardware overhead.  
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