

Memory Based Computation Using Embedded Cache for Processor Yield and
Reliability Improvement

Somnath Paul and Swarup Bhunia

Electrical Engineering and Computer Science Department, Case Western Reserve University,
Cleveland, OH.

{sxp190, skb21}@case.edu

Abstract

VLSI systems in the nanometer regime suffer from
high defect rates and large parametric variations that
lead to yield loss as well as reduced reliability of
operation. In this paper, we propose a novel memory-
based computation framework that exploits on-chip
memory for reliable operation by transferring activity
from a defective or unreliable functional unit to the
embedded memory. This allows the die to run at a
reduced performance level instead of being
completely discarded or being throttled (in case of
variations). We show that the proposed method
improves yield and reliability in a superscalar out-of-
order processor by tolerating defective functional
units and allowing dynamic thermal management. The
simulation results show that it entails only a small loss
in performance (average 1.8%) at the cost of 9.5% of
area overhead required with hardware duplication.

I. INTRODUCTION
Although technology scaling provides the

capability to integrate billions of transistors in a
modern processor, it gives rise to important issues
such as high defect rate and variability-induced
reliability concerns [1]. Increasing defect rate and
device parameter variations in sub-90nm technology
regime leads to reduced yield [2]. Moreover, increased
power density in modern high-performance
microprocessors (~100W/cm2 for 50-nm technology
[3]) leads to an overall increase of the processor
temperature due to the limited cooling capacity of the
package. Moreover, the power density varies across
the chip depending upon the functionality of the
circuit block. Typically power density of a cache is
much less compared to the execution unit (e.g. integer
ALU). In order to adapt to both manufacturing
defects and Process-Temperature-Voltage (PTV)
induced parameter variations, an effective solution is
to develop a system which can dynamically detect and
correct defect and variation induced failures. For
example, thermal management under temperature
variation can be addressed using a Dynamic Voltage
Frequency Scaling (DVFS) scheme [4], which can

dynamically adjust operating conditions (i.e. voltage
and frequency) to operate under a temperature and
power envelope (thereby achieving high reliability).
Such a system, however, incurs high performance loss
(due to system-wide voltage/frequency scaling) and
large hardware overhead. In this paper, we propose an
architecture-level solution for improving processor
yield and reliability of operation using memory based
computation. The proposed computation framework
allows on-demand transfer of activity from functional
units of the processor such as ALU to the embedded
memory of the processor and thus compensates for
hardware defects as well as reduced reliability of
operation in a functional unit under parametric
variations.

The key idea is to realize the functionality of
different execution units in a processor, such as adder
or multiplier using on-chip memory, which acts as a
reconfigurable computing resource. We demonstrate
that on-chip cache in a processor can be used to

Figure 1: Flow chart showing memory

based computation framework.

1-4244-1258-7/07/$25.00 ©2007 IEEE 341

perform computation on demand by storing the results
of Boolean functions as a look-up table (LUT). The
portion of the embedded memory dedicated to LUT
implementation of the different functions can be
traded off with the performance loss which is however
within tolerable limits due to the high locality of
reference across different clock cycles. A small
hardware overhead (which we call as glue logic) is
required for forming the effective virtual and physical
addresses to access the cache and the main memory
respectively.
The paper makes the following contributions:
1. It proposes to use the on-chip memory of a
processor to realize the functionalities of different
execution units.
2. It ensures correct operation of the processor in
case of Process-Temperature-Voltage induced
parametric variations by transferring the activity of
the functional units to the memory.
3.It helps in salvaging the processors with defective
functional units by allowing memory based realization
of their functionalities and therefore improves the
yield in a “go-no-go” situation.

II. MEMORY BASED COMPUTATION:
OVERVIEW

Memory-based look up table implementation is
common in case of FPGAs, which essentially consists
of two-dimensional array of small LUTs and
programmable switching matrix. Memory based
computation has also been explored in the context of
Digital Signal Processing (DSP) domain as illustrated
in [7]. The idea is to circumvent the classic Von-

Neumann bottleneck [7] by moving the data to the
memory and doing the computation in the memory
itself. The advantage of such a technique is some
iterative tasks meant for running on the CPU can now
be run in the memory itself, thus increasing the
throughput. A similar approach has been followed in
[9], where the authors have proposed a LUT based
implementation of computation intensive DSP and
image applications such as DCT and IDCT. The on-
chip cache is used for realization of the LUT.
However, the method as described in [9] entails a
significant design overhead due to incorporation of
computing elements and intermediate decoders in the
cache memory. Although memory based computation

Figure 2: Integration of memory-based

computation with dynamic pipeline.

Figure 5: Implementation of memory based
addition using carry-select adder.

Figure 3: Formation of virtual and physical

addresses.

Figure 4: Arrangement of addition results in

cache and main memory.

342

has been explored before, the proposed computation
framework has two major differences from the
previous works: a) it tries to perform most common
operations in a system (such as addition,
multiplication etc.) and not specific iterative tasks; b)
it addresses improvement in yield and reliability; c) it
preserves the advantage of high device integration
density of embedded caches. On-chip memory in
modern processors can be utilized to realize logic
function apart from being used as a stand-alone
storage element for data and/or instructions. In order
to explain the operation of the proposed methodology,
we will try to answer the following four questions.
a) How can we perform computation in memory?
In this work, we propose implementing logic and
arithmetic operations in the on-chip cache, which
provides easy dynamic reconfigurability (which
means the same cache memory can be used as a look-
up table for add and multiplication operations in
different cycles). We assume the result of an operation
is stored in physical memory and fetched on-demand
to the on-chip cache. Clearly, the allocation of data in
the table and its intelligent processing is essential to
reduce the amount of storage.
b) Which functions should we compute in memory?
Functions which have relatively small number of
inputs and outputs are ideally suited for memory
based computation. Arithmetic operations such as
addition and multiplication often involve large
operands. However, we note that such operands can
be suitably bit-sliced and the memory based

computation can be executed on these bit-sliced
operands. This also reduces the amount of storage
required for this framework.
c) When do we perform memory based computation?
A memory based computation framework will not be
able to replace a logic unit in terms of its performance.
However, in the scenario of a permanent defect to a
functional unit or when the functional unit operates
under thermal stress, the memory may be used to
share a workload from the functional unit [6].
b) What modifications we need to incorporate in
the memory?
 The requirements for the embedded memory to
support computation can be divided into two classes.
These are: 1) efficient look up and data storage
algorithm that integrates seamlessly with the
conventional embedded memory addressing scheme
2) the functional requirement for the embedded
memory to have low access latencies. Moreover, the
algorithm for fetching the data from the main memory
should be capable of exploiting the temporal
correlation of the data for the same operation across
different clock cycles.

III. ACTIVITY TRANSFER IN A
PROCESSOR

The proposed memory based computation framework
was applied to realize the functionality of the integer
execution unit, which is extremely critical in an Out-
of-Order Superscalar processor pipeline. An overview

T emp Control Scheme Without Extra M emory

0

5

10

15

20

25

ap
pl

u ar
t

ap
si

bz
ip

cr
af

ty

eo
n

fm
a3

d

gc
c

gz
ip

lu
ca

s

m
es

a

m
gr

id

pe
rlb

m
k

si
xt

ra
ck

tw
ol

f

vp
r

Benchmarks

%
 in

cr
ea

se
 in

 C
PI

Temp Control Scheme With Extra Memory

0

2

4

6

8

10

ap
pl

u ar
t

ap
si

bz
ip

cr
af

ty

eo
n

fm
a3

d

gc
c

gz
ip

lu
ca

s

m
es

a

m
gr

id

pe
rl

bm
k

si
xt

ra
ck

tw
ol

f

vp
r

Benchmarks

%
 in

cr
ea

se
 in

 C
P

I

Fault Recovery Scheme Without Extra Memory

0

5

10

15

20

25

ap
pl

u ar
t

ap
si

bz
ip

cr
af

ty

eo
n

fm
a3

d

gc
c

gz
ip

lu
ca

s

m
es

a

m
gr

id

pe
rlb

m
k

si
xt

ra
ck

tw
ol

f

vp
r

Benchmarks

%
 in

cr
ea

se
 in

 C
PI

Fault Recovery Scheme With Extra Memory

0

2

4

6

8

10

12

ap
pl

u ar
t

ap
si

bz
ip

cr
af

ty

eo
n

fm
a3

d

gc
c

gz
ip

lu
ca

s

m
es

a

m
gr

id

pe
rlb

m
k

si
xt

ra
ck

tw
ol

f

vp
r

Benchmarks

%
 in

cr
ea

se
 in

 C
PI

Figure 6: Performance overhead for temperature control and fault tolerance schemes.

343

of the proposed scheme has been shown in Fig. 1. In
case of permanent failure of a functional unit or when
the temperature of a particular functional unit such as
an ALU adder or a multiplier is above a threshold
limit (100°C), the adder or the multiplier of the ALU
is bypassed followed by memory based computation
of these functions. Once a need for bypassing the
normal execution unit has been detected the processor
will need to issue an indication for the OS to load the
result tables for that particular operation in a section
of the main memory. The OS returns the pagebase
address where the results for the look up table
realization of the operation are being stored in the
main memory. This pagebase address will be used for
further access to the main memory to load the result
tables to the on-chip cache memory. The pagebase
address is used to form the physical address required
to access the main memory, the on-chip cache being
accessed with a virtual address. The instruction after
being issued from the issue queue is redirected to the
address generation unit (shown by bold arrows in
Fig.2) for calculation of effective address, which is
used to access the result of the operation.
A. Formation of effective addresses
 Two most frequent arithmetic integer operations,
addition and multiplication were chosen for
realization using memory based computation
procedure. The multiplication operation was
implemented using repeated additions. The following
section discusses the formation of virtual and physical
addresses required to retrieve the addition results from
the cache or the main memory. The formation of
virtual and physical addresses is shown in the Fig. 3.
Let us consider the addition of two 32 bit long
operands X and Y. Each of the operands can be seen
as a regarded as a combination of four 1 byte operands
(X0, Y0), (X1, Y1), (X2, Y2) and (X3, Y3). The
addition result for such 1 byte operands can be stored
in the memory in the form of tables. For the first
access, let us consider that the operands are X0 and Y0.
As shown in Fig. 3, the virtual address to access the
L1 cache is formed with the operand X0 forming the

tag section for the virtual address. The index for the
virtual address is formed by ‘X0 mod L1set’ operation
where L1set is the number of sets present in the L1
cache. The other operand is used as the block offset
section for the virtual address. The proposed
addressing scheme thus circumvents the
synonym/aliasing problem common for virtually
indexed virtually tagged addressing by having one of
the operands present in the tag portion of the virtual
address. The physical address required to access the
main memory tables is formed with one of the
operands serving as the page offset. The page base
address stored previously from the OS is concatenated
with the page offset to form the complete physical
address that selects a line of a page in the main
memory. The selected line contains the addition
results of the operand in the page offset with all
possible 1 byte operand. Since we are considering
only addition as the fundamental operation, the
addition LUTs loaded in the main memory have one
page base address. This single pagebase address
eliminates the overhead of having a Page Table or
Translation Look-Aside Buffer (TLB). In the
proposed scheme, a virtually indexed virtually tagged
cache removes the need for virtual to physical address
translation on each cache access. Such a translation is
required only for accessing the main memory.
B. Cache and Memory Organization
The cache and the memory organization for storage of
addition results are shown in Fig. 4. The page loaded
in the main memory contains the addition result of all
8 bit operands and the respective carry outs. Each line
of the page in the main memory contains the sum of
one 8-bit operand (let X0) with all 8 bit operands (Y0,
Y1 ..YN). Two such sets are present, for input carry is
zero and one. The page offset is used to access the
addition results for both cases of the input carry. The
input carry is then used to select the proper addition
results. On a cache miss, the memory line containing
the addition results of one of the operands (X0) is
brought into the cache. The second operand (say Y0)
which forms the block offset section of the address is
used to access the result of addition for the two
operands (X0 and Y0). The hierarchy of cache access
is shown in the Fig. 1. The L1 cache is accessed with

Table I: Area overhead for glue logic
 Area (µm2) Total Area

(µm2)
32 bit Shifter 11280
32b Priority

Encoder
3541

32 bit Comparator 4503

19324

Area overhead for duplicated functional
unit

32 bit Adder 10135
16 bit Multiplier 194420

204555

99
100
101
102
103
104
105
106
107
108

1 187 373 559 745 931 1117 1303 1489
Simulation Cycle

Te
m

p

Uncontrolled Temperature profile
Controlled Temperature profile

Figure 7: Temperature profile for ALU unit.

344

the L1 virtual address; miss on the L1 cache triggers
an L2 cache access with the L2 virtual address. A hit
on the L2 cache causes the return of data to the
reservation station or the integer register that is
supposed to receive the result of addition. The data is
also written into L1 cache and the valid bit is set on a
successful write operation. If a free write location is
not found in the L1 cache, then the data present in that
location is evicted from L1 and written to L2 cache.
The Least Recently Used (LRU) policy is followed as
a replacement policy for L1 eviction scheme.
C. Memory based addition procedure
 A scheme based on carry-select addition of two 32
bit operands using memory based computation is
shown in the Fig. 5. The 32 bit operands are divided
into 8 bit operands and for each set, the sum is looked
up from the cache using the input carry as select
signal. Thus the entire addition procedure is
completed in two steps, a memory look up and
subsequent carry select addition using the 8 bit
operand addition results.
 D. Implementation of the multiplier
 The proposed scheme for memory based
computation can be extended to integer multiplication
as well. The fundamental operation for implementing
an integer multiplier is addition and the simplest

implementation for the multiplication of two integers
can be realized by checking the multiplier bits for zero
or one. The shifted multiplicand is added to the partial
product to obtain the new value of partial product. The
shifted value of the multiplicand is obtained by a
combinational shifter network. The addition of the
partial product and the shifted multiplicand is however
realized by memory based addition operation. Some
other implementations for the multiplier have also
been investigated such as the Booth Radix 2 and 4 as
well as using the look-up table based implementation
described in [8]. However, the simplest multiplication
algorithm has been found to offer comparable
performance at a lower design overhead.

IV. TEST SETUP & RESULTS
i) Test Setup: The proposed scheme has been validated
on an Out-of-Order Superscalar processor architecture
using the Simplescalar Tool Set Version 3.0 [10]. The
baseline configuration includes an 8-way issue
processor with 6 integer ALUs and 2 integer mul/div
units. The virtually addressed cache memory includes
2 way 8KB L1 cache with 1 cycle latency and a 4-way
64KB L2 cache with 6 cycle latency, both of which
have LRU replacement policy. The main memory
page allocated for storing the results of addition

0

2

4

6

8

10

12

perlbmk twolf art bzip mesa gzip
Benchmarks

W
at

ts

i) baseline configuration

ii) config. 1 w/o defect tolerance

iii) config. 1 w defect tol

0

2

4

6

8

10

12

14

perlbmk twolf art bzip mesa gzip
Benchmarks

W
at

ts

i) baseline configuration

ii) config. 2 w/o defect tolerance

iii) config. 2 w defect tol

 (a) (b)

Figure 9: Power results with and without memory based computation framework in case of
a) 2 adders 1 multiplier being faulty and b) 4 adders and 1 multiplier being faulty.

0

0.1

0.2

0.3

0.4

0.5

0.6

perlbmk tw olf art bzip mesa gzip

Benchmarks

C
PI

i) baseline configuration
ii) config. 1 w /o defect tol.
iii) config. 1 w defect tol.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

perlbmk twolf art bzip mesa gzip

Benchmarks

C
PI

i) baseline configuration
ii) config. 2 w/o defect tol.
iii) config. 2 w defect tol.

(a) (b)

Figure 8: Performance results with and without memory based computation framework in case of
a) 2 adders 1 multiplier being faulty and b) 4 adders and 1 multiplier being faulty.

345

instruction is of size 64KB. The latency for accessing
the main memory is taken to be 100 cycles for the first
access and 4 cycles for inter chunk access. We have
considered two different scenarios, i) when the
memory based computation is used for improving the
reliability of operation under temperature variation, ii)
when the proposed computational framework is used
to completely replace few functional units that have
been rendered inoperative. Simplescalar was modified
to incorporate the proposed activity transfer scheme
and the above scenarios were then simulated for
different Spec2000 Benchmarks [5]. For each scenario
mentioned above, the performance loss was estimated
when i) an extra on-chip memory is used for LUT
implementation ii) when the existing caches are used.
ii) Results: From the performance results presented in
Fig. 6, we note that when the proposed computational
framework is used for temperature management with
an extra on-chip memory being used for LUT
implementation, the average increase in Cycles-Per-
Instruction (CPI) is only 1.58%. When existing on-
chip memory was used, the performance degraded
more (3.89%), since it led to more capacity misses. It
is important to note that in DVFS scheme [4], the
performance penalty is over 10%. Thus, the proposed
scheme has significant savings in performance over
DVFS for temperature management. Figure 7 shows
the temperature profiles of the ALU unit for a given
benchmark (perlbmk). As seen in Fig. 7, the
uncontrolled temperature profile tends to increase
more even after it has crossed the temperature
threshold. However, in the proposed activity transfer
scheme the ALU operation is bypassed, thus allowing
the ALU temperature to decrease. We have also
validated the effectiveness of the proposed scheme for
improving yield assuming hard defects in the
execution units. The results in Fig. 6 correspond to the
case where 2 integer adders and 1 integer multiplier
are considered to be defective and their activity is
migrated. The performance overhead is only 2% in
case of a separate flexible memory and 4.47% in case
of using the existing cache for LUT implementation.
Configuration 1 and 2 in Fig. 8 (a) and (b) correspond
to the case when i) 2 integer adders and 1 integer
multiplier are defective and ii) 4 integer adders and 1
integer multiplier are defective respectively. As
observed from Fig. 8(a), the performance overhead for
a faulty processor with configuration 1 is 13.27%. In
case of configuration 2, the processor suffers a higher
performance overhead (81.2%) due to more number of
defective units. However, when the proposed scheme
is incorporated in the processor architecture, the loss
in performance is minimal (1.71% and 16.4%
respectively). The smaller performance overhead for
the proposed computation framework is due to the
correlation that exists among the operands thereby

reducing the number of L2 and main memory accesses.
The proposed activity transfer scheme requires
additional hardware which involves a 32 bit
comparator for comparing the operands before
memory based addition and multiplication procedures.
Additional hardware required for multiplication
includes a 32 bit priority encoder and a 32 bit shifter
for obtaining a multiplicand of proper weight. Table I
compares the hardware overhead for the proposed
scheme against the complete duplication of the entire
functional units. The additional hardware requirement
for memory based computation is only 9.5% of the
duplicated functional units. We have also noted the
power overhead due to the proposed framework. The
results were collected using Wattch Tool Set Version
1.0 shown in Fig. 9(a) and (b). From the results we
note that the proposed scheme incurs a power
overhead of 10.74% and 27.15% for configuration 1
and 2 respectively.

V. CONCLUSION
We have presented a novel memory based
computation framework that will enable modern
processors for on-demand transfer of computation
from functional unit to memory. The principal idea is
to use embedded cache of a processor as LUT based
computing resource. The proposed scheme can be
effectively used to improve manufacturing yield and
temporarily bypass the activity in functional units
under time-dependent local variations, thus providing
an efficient solution to dynamic thermal management.
We show that the benefits of memory-based
computation come at the expense of small loss in
performance and low hardware overhead.

REFERENCES
[1] S. Borkar, “Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation”, IEEE Micro, 2005.
[2] A. Agarwal et al, “A Process-Tolerant Cache
Architecture for Improved Yield in Nanoscale
Technologies”, IEEE TVLSI, 2005.
[3] C. Minsik, “TACO: temperature aware clock-tree
optimization”, ICCAD 2005, Pages: 582 – 587.
[4] R. McGowen et al, “Power and temperature control on a
90-nm Itanium family processor”, IEEE JSSC 2006.
[5] Spec 2000 benchmarks. [online]
http://www.spec.org/cpu/
[6] K. Asanovic et al, “Reducing power density through
activity migration”, Pages: 217 – 222.
[7] B. I. Pawate et al, “Memory based digital signal
processing”,ICASSP-90,pp.941-944.
[8] H. Ling, “An approach to implementing multiplication
with small tables”, IEEE Computers, 1990, pp: 717 – 718.
[9] H. Kim et al., “A reconfigurable multifunction
computing cache architecture”, IEEE TVLSI, Vol. 9(4), 2001.
[10] Simplescalar tool set. [online] www.simplescalar.com.

346

