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Abstract 
 

This paper presents a powerful routing method for 
pseudo-exhaustive built-in self-testing of high-speed 
interconnects with both capacitive and inductive crosstalk 
effects. Based on the concepts of test cone and cut-off 
locality, the routing method can generate an interconnect 
structure such that all nets can be tested by pseudo-
exhaustive patterns. The test pattern generation method is 
simple and efficient. Experimental results obtained by 
simulating a set of MCNC benchmarks demonstrate the 
feasibility of the proposed pseudo-exhaustive test 
approach and the efficiency of the proposed routing 
method.  
 
1. Introduction 
 

Noise effects can cause crosstalks and signal 
overshoot and ringing. If the signal loss on an interconnect 
is out of the defined safe margin, it may cause 
performance degradation, even logic error [1]. Several 
design techniques, including physical design and analysis 
tools, have been developed to help design for margin and 
minimize crosstalk problems [2] [3]. However, it is hard 
to anticipate in advance the impact of a full range of all 
possible process variations and manufacturing defects. 
Due to the complexity of the signal integrity problem, it is 
very hard to fix it in the design phase. Hence, there is a 
critical need to develop testing techniques for 
manufacturing defects that may produce crosstalk effects. 

In dealing with the signal integrity testing problem 
for RC interconnects, one of the most famous fault model 
is maximum aggressor (MA) model [4]. The basic idea of 
the MA fault model is to apply identical transitions to all 
wires except the victim line to create the maximal 
integrity loss in the victim line. It has been used 
extensively in crosstalk signal integrity testing methods 
[5][6]. However, it fails to deal with long range, complex 
inductive coupling which is significant in current Giga 
Hertz designs. In [7], it has been found that there exist test 
patterns creating worse delay and/or noise and causing 
more integrity loss compared to those generated by the 
MA model. Due to the complexity of inductive coupling 
in RLCK interconnects, finding test patterns guaranteed to 

create the worst-case scenarios for integrity loss is almost 
impractical. It is even concluded in [8] that random test 
patterns are more qualified than those based on 
conjectured models to create the worst-case integrity test.  

There are few test pattern generation methods targeting 
RLCK interconnects with full consideration of long range 
inductive coupling effects. One interesting attempt is to 
use an efficient simulation method to do test pattern 
generation [9]. To enhance the performance, model order 
reduction is applied to alleviate the computation 
complexity with slight loss of accuracy. Due to the 
complexity of a real circuit, it might be hard to apply this 
method to a large interconnect structure in real circuit 
design. 

The concept of pseudo-exhaustive built-in self-
testing (PE-BIST) for crosstalk noises of high-speed 
interconnects has been proposed in [10]. PE-BIST is a 
natural choice for interconnect noise testing due to the 
local property of capacitive and inductive noises. In this 
paper, we mainly focus on presenting an efficient routing 
method based on the concepts of pseudo-exhaustive test 
cone and cut-off locality to form an interconnect structure 
which is pseudo-exhaustive testable. The rest of this paper 
is organized as follows. The basic ideas of pseudo-
exhaustive testing and crosstalks are discussed in Section 
2.  Section 3 deals with PE-BIST test cone determination. 
Section 4 focuses on test pattern generation and delivery. 
Section 5 is the core part of this paper which deals with 
the post global routing problem to generate PE-BIST 
testable interconnects. Experimental results are shown in 
Section 6. Finally, concluding remarks are given in 
Section 7. 

 
2. Background 

 
Pseudo-exhaustive testing has many of the benefits 

of exhaustive testing, but the number of test patterns can 
be greatly reduced by applying exhaustive test patterns to 
each output cone, instead of the entire circuit [11][12][13]. 
Fortunately, for signal integrity testing, it has been 
observed that not all signal lines around a victim 
interconnect are effective aggressors for the victim under 
testing.  
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In low and mid-range frequencies, capacitive 
coupling has been the major noise source for signal 
integrity problems. It is well known that capacitive 
coupling has local effects. The capacitive coupling effect 
between interconnects decreases substantially for non-
adjacent lines. In a typical RC interconnect bus simulation, 
results show that we can test the victim line by 
exhaustively exercising only several nearest aggressors 
instead of all aggressors, without loss of the desired test 
accuracy. For RC-like interconnects, capacitive coupling 
decreases greatly with distance. 

While at high frequencies, inductive coupling 
becomes no longer negligible, and is no longer a short 
range effect. In fact, the inductive coupling effect 
decreases slowly in space which results in a long range 
effect [14]. Crosstalk generally involves multiple coupled 
RLCK interconnects. Shielding insertion is known as an 
efficient technique to reduce the inductive coupling 
between signal wires. A shield is basically a metal directly 
connected to ground. A shield can reduce inductive noise 
because it supplies a current return path for aggressor 
signal wires, thus reducing coupling between signal wires. 
A dedicated shield is generally considered as a good 
current return path in high-speed interconnect design. A 
good shielding scheme will greatly reduce inductive 
coupling. It has been shown that the noise effect decreases 
monotonously for different aggressor groups, if shields are 
inserted into an interconnect structure regularly to divide 
aggressor wires into aggressor groups. This results in a 
similar local noise effect like in the RC case [10]. 

Naturally, we introduce the concept of locality as a 
measurement of an aggressor’s significance to a victim.  
 
Definition: Locality is the distance between an aggressor 
line and the victim line, expressed by the number of lines 
between the aggressor and the victim. For aggressors 
immediately adjacent to the victim line, the locality is zero. 

 
As an aggressor is far away from the victim line, it 

becomes an ineffective aggressor and thus can be ignored 
in the test set for the victim line. Depending on the desired 
test accuracy, there is a milestone locality to decide which 
aggressors are effective ones. Beyond this locality, the 
aggressors can be considered insignificant for the test case. 
This locality is defined as cut-off locality. 

Locality serves as a measurement of the influence on 
the victim line by an aggressor line in both the RC and 
RLCK cases. By choosing a cut-off locality, the entire 
exhaustive testing space can be substituted by a set of 
effective aggressor test spaces without loss of the desired 
accuracy. In [10], we have shown that for RLCK 
interconnects, the noise effect of aggressor groups is very 
similar to the noise effect of aggressor lines in RC 
interconnects. Due to the limited size of this paper, we 
cannot present the shielding insertion scheme for RLCK 

interconnect PE-BIST. We assume that a shielding 
insertion scheme already exists to divide RLCK 
interconnects into aggressor groups which behave similar 
to signal wires in RC interconnects, in terms of locality. 
This releases our burden of explaining RLCK shielding 
insertion scheme in detail. (We will cover that topic in a 
separate paper). We can focus on how to use the concept 
of locality to construct a pseudo-exhaustive testable 
interconnect structure. Readers will soon realize that our 
algorithm is largely dependent on the concept of locality. 
The testing method and algorithm can be applied to any 
kind of interconnects as long as the crosstalk effect can be 
confined to a finite number of “local” aggressors.  

Based on the concept of locality, we can just apply 
exhaustive patterns of those effective aggressor lines to 
the victim line. Such a test set is called a pseudo-
exhaustive test set of the victim line. Fig. 1 shows an 
example of an interconnect PE-BIST cone and the victim 
line is represented by “V”. If each aggressor has two 
states (rising and falling transitions), all 220 aggressor 
patterns are applied to both the left and right ten effective 
aggressor lines (each is marked by “A” in Figure 1) 
adjacent to victim line V. Instead of exercising full 
combinations of test patterns at all interconnects (except 
V), we apply exhaustive test patterns only to the cone of 
interconnects (except V) as shown in Fig. 1. This is the 
reason why victim line V is called pseudo-exhaustively 
tested. The whole test setting (one victim line and 20 
aggressor lines) is called a test cone. Thus, a test cone of a 
victim line contains the victim itself and its left and right 
effective aggressors. 

 
Figure 1: An interconnect PE-BIST cone. 

 
3. PE-BIST Test Cone Determination 
  
 As we discussed in the last section, the effective 
aggressors of a victim line can be identified by setting its 
cut-off locality. Any aggressor with its locality (with 
respect to the victim line) less than the cut-off locality is 
considered as a significant aggressor, and thus should be 
included in the pseudo-exhaustive test cone of the victim. 
For a simple interconnect structure like a data bus, when 
the cut-off locality is set, the test cone size can be easily 
determined. For a simple interconnect bus structure, if the 
cut-off locality is set to n, the test cone size is 2n+1 (2n 
aggressors and one victim).  

Circuit Block (Core) 
V A A A A 

…… …… 
10 Lines 10 Lines 

Circuit Block (Core) 
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 For an arbitrary interconnect structure, a long 
signal line may span different routing regions, and the 
aggressors to this line are distributed. We use Net 
Interference Graph (NIG) to record the crosstalk between 
different nets. Each node of a NIG represents an available 
signal net. If two nets constitute a potential aggressor-
victim pair, there is an edge connecting them in the NIG. 
If two nets are within cut-off locality range, they are 
aggressor-victim pairs. Accordingly, there is an edge 
connecting these two nets in the corresponding NIG.  

 
Figure 2. Example interconnect structure in two 

routing regions. 
 

 
Figure 3. Merge of two regional NIGs into a global 

NIG. 
 
Fig. 2(a) and Fig. 2(b) show two interconnect 

structures in two routing regions. Fig. 3 shows their 
corresponding (regional) NIGs. For simplicity, we set the 
cut-off locality to 1. This means we consider crosstalk 
effects only between adjacent nets. Fig. 3(a) shows that 
each node is connected to its adjacent nets in Fig. 2(a). 
Note that in Fig. 3(a), the NIG is constructed from a 
specific routing region, and is called a regional NIG 
(RNIG). So is Figure 3(b). A global NIG (GNIG) is a 
simple combination of all RNIGs. Fig. 3(c) shows an 
example of the GNIG formed from two RNIGs in Figures 
3(a) and 3(b). The weight of an edge in the GNIG is the 
total number of times the edge appearing in all regional 
NIGs. In this GNIG, the weight of edges 1-2, 4-5, 5-6 is 2 
(Fig. 3), since those edges appear in both RNIGs. 

Once we have the GNIG formed, we can determine 
the effective aggressors for each victim net which in turn 
indicates the test cone size requirement. For example, to 
test net 3 in Fig 3, we need to exhaustively test its 
aggressor nets 2, 4, 7 and 8. The number of aggressor nets 
for a victim equals to the order of the victim vertex in the 
GNIG. To test the victim net, we must cover all its 
aggressors in the test set. For a node with a small order, its 
test set is small. The PE-BIST test cone size must be large 

enough to cover all the aggressors of the node which has 
the maximum order (called m). By doing so, the test set 
will also be able to cover all those nodes with order less 
than m. So, the maximum order of all vertices in the 
GNIG constitutes the minimum test cone size required by 
the proposed PE-BIST method.  
 
4. PE-BIST Test Pattern Generation and Delivery 

 
As shown in Fig. 4, the test pattern generation circuit 

for the interconnect PE-BIST method contains an LFSR-
driven aggressor signal generator, a victim signal 
generator, a test pattern generation controller and a PE-
BIST controller. The LFSR is used to generate all 
combinations of 0 and 1 logic values except the all-zero 
test pattern. The aggressor signal generator (ASG) will 
issue either a rising or falling transition upon excitation 
from the LFSR. For example, an LFSR bit with logic 0 (1) 
will generate a rising (falling) transition in the 
corresponding aggressive line. The victim signal 
generator (VSG) is used to generate signals for the victim 
interconnect, and the signals include Q1 (constant logic 1), 
Q0 (constant logic 0), rising and falling. The PE-BIST 
controller is used to coordinate the operation of the entire 
test pattern generation process. The output of the test 
pattern generation controller is abstracted as “Channels”. 
The test pattern generation controller works in such a way 
that it will select one channel as the victim channel and 
connect it to the victim signal generator. All other 
channels are connected to the aggressor signal generator. 
For each victim excitation pattern, the aggressor signal 
generator will excite all aggressors to generate a pseudo-
exhaustive test set for this victim channel. Then, it will set 
the next channel as the victim channel, and generate 
pseudo-exhaustive patterns for that channel. This process 
is repeated until each channel has been selected as a 
victim channel.  

For a test cone size n+1, there are n aggressor channels 
and one victim channel. The total number of test patterns 
is nn 2)1(4 ×+ . The reasons are: (1) there are n+1 
different victims within this cone, (2) each victim will be 
tested by 2n  different test patterns from n aggressor lines, 
and (3) each victim can have four different values (Q1, 
Q0, rising and falling) for pseudo-exhaustive test patterns 
from its aggressors. 

 
Theorem 4.1 If all aggressors of a victim net and the 
victim net are connected to different channels of the test 
pattern generation controller, the victim net will be 
pseudo-exhaustively tested. Proof: omitted.  
 
 To assign nets to each channel, we begin with the 
node with the maximum degree of connection. Then, we 
assign different channel numbers to the node and all its 
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connected nodes. For the example interconnect structure 
in Fig. 5, nets 3, 4, 2, 7, 8 are assigned to C1, C2, C3, C4, 
C5, respectively. For nets 1 and 5, they are assigned C5 
while net 6 is assigned to C3. There are multiple ways to 
assign nets to channels. As long as all connected nets are 
assigned different channels, they will be pseudo-
exhaustively tested during the test pattern generation 
process. For example, when channel 3 is assigned victim 
test patterns (nodes 2 and 6 are victim nets), channels C1, 
C2, C4, C5 will apply exhaustive aggressor patterns to 
aggressor nets 1, 3, 4, 5, 7, 8. Fig 6 shows the connection 
of channels to the interconnect signal lines. Note that nets 
2 and 6 (1, 5, and 8) are tested simultaneously. 

 
Figure 5. PE-BIST test pattern channel assignment. 

 
The test pattern generator can be distributed to 

different circuit cores. There is no need for one central test 
pattern generator. All test pattern generators are 
synchronized such that any channel with the same label 
will generate the same test pattern at any given time. Each 
signal net driving an output cell from any circuit core will 
be connected to the corresponding channel determined by 
the labeling process discussed above. 

 
Figure 6. PE-BIST test pattern delivery. 

  
  Fig. 7 shows how the test pattern generators and 
response analyzers are distributed in different circuit 
cores. The figure shows how test patterns generated from 
different cores can come together to form a pseudo-
exhaustive test cone. For the test cone shown in Fig. 7, the 
test cone is formed by signal nets from different circuit 
cores. Specifically, circuit 1 supplies channels C4 and C5 
while circuit 2 supplies channels C1, C2 and C3. Since 
those channels are independent from each other in the test 
pattern generation process, they form a pseudo-exhaustive 
test set.  

In order to coordinate the entire test process, there is a 
centralized test controller. The controller controls the 

entire test process: setting the victim channel, triggering 
the distributed test pattern generators to start, and 
collecting the circuit responses after pseudo-exhaustive 
test patterns are applied. Note that all test generators are 
synchronized, and generate the same test pattern in each 
clock cycle. For each victim channel under testing, the 
corresponding response analyzer will collect the channel 
responses by compressing them [5][7][8]. Once the victim 
channel is pseudo-exhaustively tested, the PE-BIST 
controller can then collect all responses from all 
distributed response analyzers and perform central fault 
processing. Note that a victim channel may drive several 
victim lines. That is the reason why several test response 
analyzers may be involved. 

The whole testing process is straightforward. It would 
be easy to reuse the existing BIST circuits, e.g., the 
pseudo-exhaustive test pattern generators and the 
signature analyzers that have been built in each core. The 
most important thing in organizing the PE-BIST 
architecture is the assignment of each net into a track by 
interconnect routing, and the assignment of a test channel 
for each net. Both assignments of tracks and channels 
must accomplish the goal of pseudo-exhaustive testing 
with a specific requirement of the cut-off locality and test 
cone size. 

 

 
Figure 4. Logic structure for PE-BIST test pattern 

generation. 
 

5. Post Global Routing for PE-BIST 
 
Sections 3-4 discussed the basic idea of PE-BIST for 

interconnect testing. Especially, Section 3 discussed how 
to determine the PE-BIST test cone size, and in reality the 
test cone size cannot be too large. Constrained by test time, 
the total number of pseudo-exhaustive test patterns for 
each test cone cannot exceed a specific number, e.g. 230. If 
we have a GNIG with the maximum degree of all vertices 
larger than 30, we have to find a way to control the degree 
of that vertex so that it meets the test time constraint. 

In modern routing technologies, the routing problem 
is usually solved by using a two-stage approach: global 
routing followed by detailed routing. The detailed routing 
step includes track assignment and detailed net routing. 
The relative physical track of each net plays a crucial role 
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in determining the NIG, which subsequently determines 
the PE-BIST test cone. In order to make an interconnect 
structure PE-BIST testable with a reasonable test cone 
size, we must have control over the routing phase, 
especially track assignment. So, we detach the track 
assignment process from the detailed net routing phase as 
an independent and intermediate step between global 
routing and detailed routing process. This section will 
discuss how to finish tracking assignment in a way that a 
PE-BIST solution with a limited test cone size is possible. 

 

 
Figure 7. PE-BIST distributed test pattern generation. 
 
5.1 PE-BIST Routing Problem 
Formulation of the PE-BIST Routing Problem: Given a 
set of signal nets, their global routing solution, and a 
specific pseudo-exhaustive test cone size with the desired 
cut-off locality, the PE-BIST routing problem is to find a 
net-track assignment solution so that all nets are PE-BIST 
testable within the test cone size. 

After global routing, each net is assigned to the 
individual routing region but not yet put on a track. The 
track assignment step will determine the NIG (both RNIG 
and GNIG). If we want to have nets to be aggressor-
victim pairs, we can place them close to each other within 
the cut-off locality range. On the other hand, if we want to 
decouple two nets, we can put them far away from each 
other. This will alter the topology of the NIG, which 
subsequently decides the PE-BIST test cone size. By 
placing nets into the right tracks, we can have control over 
the NIG and ultimately over the PE-BIST test cone size. 
This is why we choose to construct PE-BIST testable 
interconnects in the post global routing phase. 

In the process of building the GNIG, we first build 
the RNIG for each region individually, and then combine 
all RNIGs into the GNIG. In our track assignment 

algorithm, we follow the same bottom-up building process: 
starting with RNIG construction and then accumulating 
RNIGs into the GNIG gradually. First, we start with a 
routing region which has the least number of nets. We 
choose such a routing region to start because it has the 
least flexibility in placing those nets in the region. We 
place nets into tracks one by one for each region. The net 
is chosen by a cost function such that the net with the least 
cost and satisfying the GNIG PE-BIST constraint will be 
selected. The cost calculating process is repeated for every 
net placement to dynamically reflect the cost change after 
a net is placed. If no candidate net can be found for a 
certain track because of the GNIG PE-BIST constraint, a 
shield can be inserted to decouple certain nets placed in 
the region. In the next section, we will illustrate the 
algorithm with an example. 
 
5.2 PE-BIST Routing Algorithm 

Assume we have a GNIG processed so far given in 
Fig 8. That is, currently, seven nets 1 to 7 have been 
assigned to tracks in one or more regions, and their 
corresponding relationship is presented in Fig. 8. The test 
cone size is preset to 5 with the cut-off locality set to 2. 
Now, we need to process a region which contains nets 4, 5, 
6, 7, 8 after the global routing phase. Our mission is to 
find a track assignment and shield insertion solution so 
that the new GNIG still satisfies the PE-BIST requirement, 
i.e., the max order of each vertex is less than the pseudo-
exhaustive test cone size: 5. 

First, we extract the available NIG information for 
the nets in the processed region from the GNIG. It is 
essentially a sub-graph of the GNIG except that we add a 
new vertex if the corresponding net was not present in the 
GNIG. Fig. 9 shows the NIG information extracted from 
the GNIG with a new node 8. 

 
Figure 8. An example GNIG as starting point 

 
Our next step is to place nets (4, 5, 6, 7, 8) into 

different tracks so that the resultant GNIG still satisfies 
the PE-BIST requirements. If we can find a net order such 
that the GNIG remains the same, we say that it is cost-free 
to incorporate this region into the GNIG. Most of the time, 
we need to either modify the GNIG by adding new edges 
(newly formed aggressor-victim relationships) or we need 
to add extra shields to prevent nets from interfering with 
each other. To illustrate this point, we use the above 
example again.  
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Figure 9. PE-BIST Routing example GNIG (cont.). 

 
First, we need to find the max clique in the extracted 

NIG. A clique of a graph G requires that every node in the 
clique (which is a sub-graph of G) is connected to each 
other. In the NIG, this means every node (representing 
each individual net) is allowed to interfere with each other. 
Since we use a bottom-up approach, the clique 
information can be updated every time when we add a 
new edge to the graph, without exhaustively searching for 
cliques. We have a clique in Fig. 9 formed by nets 4, 5, 6. 
If several cliques are found with the same number of 
nodes, we select the one whose sum of orders is maximum. 
If a clique is not found, we select a two-node pair whose 
sum of orders is maximum. In our example, we have only 
one clique which contains nets 4, 5, 6. In this clique, we 
further sort the vertices by their orders. 

It is required that the order of every vertex in the 
GNIG be less than the test cone size. On the other hand, if 
a vertex’s order is less than the test cone size, the net 
represented by that vertex can always be pseudo-
exhaustively tested. While we must limit the maximum 
order of each vertex, we can add more edges to a vertex as 
long as its order is smaller than the test cone size. If a 
vertex has the maximum order, the corresponding net is 
placed first since it has fewer freely available connections. 
If two nets have the same order, we place the net with less 
connections to nets in this region first. In our example, 
both nets 5 and 6 have the highest order, followed by net 4. 
But net 6 has two connections to nets (4, 5) in this region, 
while net 5 has three connections to nets (4, 6, 7) in this 
region. So, net 6 is placed first, followed by net 5. The 
reasoning behind this is that nets with less connections to 
nets in the region have a greater probability of introducing 
new edges in the NIG when interacting with the rest of the 
nets in the region. It is placed first to reduce its exposure 
to those nets. 

Now, we have an initial track assignment for nets 6-
5-4 adjacently. Since we set the cut off locality to 2, if we 
add another net adjacent to net 4, that net will interfere 
with both nets 5 and 4. If adding such interference causes 
the order of a vertex greater than or equal to the pseudo-
exhaustive test cone size, it is not allowed to be added and 
shield(s) must be added to avoid that interference. On the 
other hand, if it does not result in that way, the net can be 
placed adjacent to net 4. To identify which net is the best 
candidate to be placed aside net 4, we first sort all 
available nets according to the cost of placing each of 
them adjacent to net 4. 

The cost considers two factors: (1) the number of 
edges to be added into the NIG, and (2) the number of 
shields to be added to separate the nets. In our example, to 
add net 7 aside net 4, we have to add a new edge between 
nets 7 and 4. While to add net 8 aside net 4, we need to 
add two edges: one is between nets 8 and 4, while the 
other is between nets 8 and 5. Net 5 will have an order of 
5 which is equal to the test cone size. So in order to put 
net 8 aside net 4, a shield must be added between net 8 
and 4. The cost of adding a shield is more than the cost of 
increasing number of edges in the NIG. Net 7 has the 
minimum cost. So we place net 7 adjacent to net 4 which 
results in Fig 10. Note that we added one new edge 
between nets 7 and 4. Our track assignment becomes nets 
6-5-4-7. 

 
Figure 10. PE-BIST Routing example GNIG (cont.). 

 
Now, only net 8 is left. We have to place net 8 aside 

net 7. But if we place net 8 aside net 7, net 8 will have 
interference with both nets 7 and 4 which results in adding 
two new edges in the NIG. It will force the vertex 
representing net 4 to have an order of 5 which is no 
smaller than the test cone size 5. This is prohibited. So, 
we have to place a shield between nets 7 and 8. By 
placing a shield between nets 7 and 8, there will be no 
added edges in the NIG since net 8 will not interfere with 
either net 7 or 4. The resulting track assignment is thus 
nets 6-5-4-7-8, and the resultant GNIG is shown in Fig 11. 
Comparing Fig. 8 and Fig. 11, one can find out that only 
one new edge and one new shield are added in the GNIG 
after the track assignment in this region. By repeating the 
above algorithm to all regions, we can guarantee to get a 
GNIG with the maximum order of all vertices less than 
the test cone size. 

The last step is channel assignment. As we have 
explained in Section 4, for a given test cone size n, our 
PE-BIST test generator must have n channels. For any net 
in the GNIG, as long as the net and all its aggressors are 
assigned different channels, all effective aggressors are 
guaranteed to be involved in generating the pseudo-
exhaustive test patterns for the net. For the above example, 
the test cone size is 5 so there are five channels C1, C2, 
C3, C4, C5. We start with a vertex with the maximum 
order, net 5 for example, and assign it to channel C1. Then, 
its adjacent nets 1, 4, 6, 7 can be assigned to C2-C5 (Fig. 
11). We have nets 4, 6 assigned to C3 and C4, so net 2 
must be assigned to either C1, C2 or C5. We randomly 
choose C1. We keep assigning channels until all nets are 
assigned. The channel assignment problem can be solved 
by graph-coloring methods [15]. In summary, two nets 
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can be assigned the same channel, if they are not 
connected in the GNIG. The final channel assignment is 
shown in Fig. 11, while the algorithm is shown in Fig. 12. 
We emphasize that the victim line with the largest test 
cone size dominates the test application time. Thus, serial 
test application for different regions (with different test 
cone size distribution) cannot reduce the test time. 

 

 
Figure 11. PE-BIST Routing example GNIG (cont.). 

 
Algorithm: PE-BIST Routing Algorithm 

Input:  1. Routing region information: R; 
2. Pseudo-exhaustive test cone size : n; 

Output: Track assignment for each net and possible shield 
insertion in each region; 
Variable:   

gNIG : global NIG; 
 rNIG : regional NIG; 
 track : net track assignment for R; 
 netProcessList : list of nets to be processed; 
Sort routing regions in R by the number of nets placed in each 
routing region;  
While (R not empty) 
 Select routing region Ri with the least number of  
 Nets;  
               Insert all nets of Ri to netProcessList; 
 Extract rNIG from gNIG for region Ri; 
 Find the max clique in rNIG; 
 Sort vertices in the clique by the order of each vertex, and 

the number of its connections to vertices in current rNIG (if 
necessary); 
Assign vertices in the clique to tracks; 
Delete all nets in the clique from netProcessList; 
While (netProcessList not empty) 
 For (each vertex in netProcessList) 

Placement cost = number of edges and shields 
added if placed in the track under consideration; 

     Select vertex Vj with the least cost; 
      If (order of any vertex in gNIG >= cone size n) 
  add one shield into track; 
     Assign vertex Vj into track; 
     Delete vertex Vj from netProcessList; 

 Update rNIG and gNIG to reflect the added edges 
and shields; 

 End For  
End While 

End While 
Assign channels to each net with the final gNIG; 
End Algorithm 

Figure 12. PE-BIST routing algorithm 
 
6. Experimental Results 

The routing algorithm for PE-BIST testable 
interconnects has been implemented in C++ and tested on 
a P4, 2.6 GHz, 1G memory, IBM PC. Since we could not 
find routing benchmarks for SoC circuits, we selected 
several MCNC benchmarks which contain a number of 
macro cells to simulate SoC circuits. The specification of 
each circuit is listed in Table 1. The grid size refers to the 
size of a global routing graph which is specified by the 
numbers of rows and columns. Each MCNC benchmark is 
placed by an SA-based floorplanner [16], and then 
gridized to form a global routing graph. Since the power 
lines have been pre-routed in our Over The Cell (OTC) 
model, we skip the routing of possible power lines in the 
net list. The global routing is completed by a maze router 
[17]. 

Table 2 shows how cut-off locality affects the 
number of shields required to route the PE-BIST testable 
interconnects for benchmark Xerox. Here, overhead is 
defined as the total shield length divided by the total 
signal net length. It can be observed that the overhead 
increases steadily as the cut-off locality increases. This is 
due to the fact that a net is exposed to more aggressors as 
the locality increases. This creates more edges in the NIG 
under construction, and thus more shields are used to limit 
the order of each vertex in the NIG. We emphasize again 
that the cut-off locality determines whether two nets are 
aggressor-victim pairs. The larger the cut-off locality is, 
the more nets are potential aggressor-victim pairs. This 
results in more connections between nodes in the NIG. 
However, the test cone size determines the maximum 
allowable order of each node in the NIG. More potential 
aggressor-victim pairs lead to more shields inserted in 
order to control the maximum order of each node within 
the test cone size.  

Test cone size also has effects on the shielding 
overhead. As the test cone size decreases, the maximum 
allowable aggressors (i.e., the vertex degree) are limited, 
and thus more shielding insertions are required to control 
the maximum order of vertices in the NIG. Table 3 shows 
the shield overhead with the test cone size from 10 to 30 
and the cut-off locality equal to 2. The corresponding 
shielding overhead decreases from 19.6% to 2.0%.  

Other MCNC benchmark circuit results are listed in 
Table 4 and Table 5 respectively. Table 4 shows the result 
with the cut-off locality equal to 1, while Table 5 with the 
cut-off locality equal to 2. As we can see, with the test 
cone size equal to 30, the shielding overhead in each case 
is very small, less than 7%. For ami33 and apte, no 
shielding overhead is induced. Note that the cut-off 
locality with a value 1 or 2 is reasonable for RC 
interconnects as discussed in Section 2.  It is also 
reasonable for RLC interconnects based on the concept of 
aggressor group (Section 2). 

 
Table 1. List of MCNC benchmark circuits 
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Chip # Macro Cell # Nets # Pins Grid Size 
ami33 33 119 442 10x8 
ami49 49 408 953 38x39 
apte 9 94 266 52x52 
hp 11 83 309 25x21 

xerox 10 195 696 29x32 
 

Table 2. Shielding overhead vs cut-off locality 
Xerox, test cone size=30, net length=4219 

Cut-Off Locality Shield Length Overhead 
1 15 0.4% 
2 84 2.0% 
3 152 3.6% 
4 265 6.3% 
5 271 6.4% 
6 356 8.4% 

 
Table 3. Shielding overhead vs test cone size 

Xerox, cut-off locality=2, net length=4219 
Test Cone Size Shield Length Overhead 

30 84 2.0% 
24 164 3.9% 
20 253 6.0% 
14 526 12.5% 
10 830 19.6% 

 
Table 4. MCNC benchmark results  

(with cut-off locality=1, test cone size=30) 
Chip Net Length Shield Length Overhead 

ami33 638 0 0% 
ami49 9354 226 2.4% 
Apte 3876 0 0% 
Hp 1522 0 0% 

Xerox 4219 15 0.4% 
 

Table 5. MCNC benchmark results  
(with cut-off locality=2, test cone size=30) 

Chip Net Length Shield Length Overhead 
ami33 638 0 0% 
ami49 9354 576 6.2% 
apte 3876 0 0% 
hp 1522 3 0.2% 

xerox 4219 84 2.0% 
 
7. Conclusion 
 

In the paper, we proposed an efficient routing method 
for PE-BIST to test high speed interconnects. The PE-
BIST concept and the related routing method can be 
applied to any interconnect structure which exhibits 
crosstalk locality. It can be applied to RC interconnects as 
well as RLCK interconnects with proper shielding 
insertion. With the aid of the global NIG and regional 
NIGs, the routing algorithm can efficiently assign 
interconnects to different tracks such that the number of 
shields added is as small as possible, while the goal of 
pseudo-exhaustive testing for interconnects can be 
achieved with reasonable test application time. Simulation 
results demonstrate the feasibility of the proposed 
interconnect test approach and the routing method. 
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