
An Efficient Routing Method for Pseudo-Exhaustive Built-in Self-Testing of
High-Speed Interconnects

J. Liu and W. B. Jone

Department of Electrical & Computer Engineering
liujn@email.uc.edu, wjone@ececs.uc.edu

Abstract

This paper presents a powerful routing method for
pseudo-exhaustive built-in self-testing of high-speed
interconnects with both capacitive and inductive crosstalk
effects. Based on the concepts of test cone and cut-off
locality, the routing method can generate an interconnect
structure such that all nets can be tested by pseudo-
exhaustive patterns. The test pattern generation method is
simple and efficient. Experimental results obtained by
simulating a set of MCNC benchmarks demonstrate the
feasibility of the proposed pseudo-exhaustive test
approach and the efficiency of the proposed routing
method.

1. Introduction

Noise effects can cause crosstalks and signal
overshoot and ringing. If the signal loss on an interconnect
is out of the defined safe margin, it may cause
performance degradation, even logic error [1]. Several
design techniques, including physical design and analysis
tools, have been developed to help design for margin and
minimize crosstalk problems [2] [3]. However, it is hard
to anticipate in advance the impact of a full range of all
possible process variations and manufacturing defects.
Due to the complexity of the signal integrity problem, it is
very hard to fix it in the design phase. Hence, there is a
critical need to develop testing techniques for
manufacturing defects that may produce crosstalk effects.

In dealing with the signal integrity testing problem
for RC interconnects, one of the most famous fault model
is maximum aggressor (MA) model [4]. The basic idea of
the MA fault model is to apply identical transitions to all
wires except the victim line to create the maximal
integrity loss in the victim line. It has been used
extensively in crosstalk signal integrity testing methods
[5][6]. However, it fails to deal with long range, complex
inductive coupling which is significant in current Giga
Hertz designs. In [7], it has been found that there exist test
patterns creating worse delay and/or noise and causing
more integrity loss compared to those generated by the
MA model. Due to the complexity of inductive coupling
in RLCK interconnects, finding test patterns guaranteed to

create the worst-case scenarios for integrity loss is almost
impractical. It is even concluded in [8] that random test
patterns are more qualified than those based on
conjectured models to create the worst-case integrity test.

There are few test pattern generation methods targeting
RLCK interconnects with full consideration of long range
inductive coupling effects. One interesting attempt is to
use an efficient simulation method to do test pattern
generation [9]. To enhance the performance, model order
reduction is applied to alleviate the computation
complexity with slight loss of accuracy. Due to the
complexity of a real circuit, it might be hard to apply this
method to a large interconnect structure in real circuit
design.

The concept of pseudo-exhaustive built-in self-
testing (PE-BIST) for crosstalk noises of high-speed
interconnects has been proposed in [10]. PE-BIST is a
natural choice for interconnect noise testing due to the
local property of capacitive and inductive noises. In this
paper, we mainly focus on presenting an efficient routing
method based on the concepts of pseudo-exhaustive test
cone and cut-off locality to form an interconnect structure
which is pseudo-exhaustive testable. The rest of this paper
is organized as follows. The basic ideas of pseudo-
exhaustive testing and crosstalks are discussed in Section
2. Section 3 deals with PE-BIST test cone determination.
Section 4 focuses on test pattern generation and delivery.
Section 5 is the core part of this paper which deals with
the post global routing problem to generate PE-BIST
testable interconnects. Experimental results are shown in
Section 6. Finally, concluding remarks are given in
Section 7.

2. Background

Pseudo-exhaustive testing has many of the benefits

of exhaustive testing, but the number of test patterns can
be greatly reduced by applying exhaustive test patterns to
each output cone, instead of the entire circuit [11][12][13].
Fortunately, for signal integrity testing, it has been
observed that not all signal lines around a victim
interconnect are effective aggressors for the victim under
testing.

1-4244-1258-7/07/$25.00 ©2007 IEEE 360

In low and mid-range frequencies, capacitive
coupling has been the major noise source for signal
integrity problems. It is well known that capacitive
coupling has local effects. The capacitive coupling effect
between interconnects decreases substantially for non-
adjacent lines. In a typical RC interconnect bus simulation,
results show that we can test the victim line by
exhaustively exercising only several nearest aggressors
instead of all aggressors, without loss of the desired test
accuracy. For RC-like interconnects, capacitive coupling
decreases greatly with distance.

While at high frequencies, inductive coupling
becomes no longer negligible, and is no longer a short
range effect. In fact, the inductive coupling effect
decreases slowly in space which results in a long range
effect [14]. Crosstalk generally involves multiple coupled
RLCK interconnects. Shielding insertion is known as an
efficient technique to reduce the inductive coupling
between signal wires. A shield is basically a metal directly
connected to ground. A shield can reduce inductive noise
because it supplies a current return path for aggressor
signal wires, thus reducing coupling between signal wires.
A dedicated shield is generally considered as a good
current return path in high-speed interconnect design. A
good shielding scheme will greatly reduce inductive
coupling. It has been shown that the noise effect decreases
monotonously for different aggressor groups, if shields are
inserted into an interconnect structure regularly to divide
aggressor wires into aggressor groups. This results in a
similar local noise effect like in the RC case [10].

Naturally, we introduce the concept of locality as a
measurement of an aggressor’s significance to a victim.

Definition: Locality is the distance between an aggressor
line and the victim line, expressed by the number of lines
between the aggressor and the victim. For aggressors
immediately adjacent to the victim line, the locality is zero.

As an aggressor is far away from the victim line, it

becomes an ineffective aggressor and thus can be ignored
in the test set for the victim line. Depending on the desired
test accuracy, there is a milestone locality to decide which
aggressors are effective ones. Beyond this locality, the
aggressors can be considered insignificant for the test case.
This locality is defined as cut-off locality.

Locality serves as a measurement of the influence on
the victim line by an aggressor line in both the RC and
RLCK cases. By choosing a cut-off locality, the entire
exhaustive testing space can be substituted by a set of
effective aggressor test spaces without loss of the desired
accuracy. In [10], we have shown that for RLCK
interconnects, the noise effect of aggressor groups is very
similar to the noise effect of aggressor lines in RC
interconnects. Due to the limited size of this paper, we
cannot present the shielding insertion scheme for RLCK

interconnect PE-BIST. We assume that a shielding
insertion scheme already exists to divide RLCK
interconnects into aggressor groups which behave similar
to signal wires in RC interconnects, in terms of locality.
This releases our burden of explaining RLCK shielding
insertion scheme in detail. (We will cover that topic in a
separate paper). We can focus on how to use the concept
of locality to construct a pseudo-exhaustive testable
interconnect structure. Readers will soon realize that our
algorithm is largely dependent on the concept of locality.
The testing method and algorithm can be applied to any
kind of interconnects as long as the crosstalk effect can be
confined to a finite number of “local” aggressors.

Based on the concept of locality, we can just apply
exhaustive patterns of those effective aggressor lines to
the victim line. Such a test set is called a pseudo-
exhaustive test set of the victim line. Fig. 1 shows an
example of an interconnect PE-BIST cone and the victim
line is represented by “V”. If each aggressor has two
states (rising and falling transitions), all 220 aggressor
patterns are applied to both the left and right ten effective
aggressor lines (each is marked by “A” in Figure 1)
adjacent to victim line V. Instead of exercising full
combinations of test patterns at all interconnects (except
V), we apply exhaustive test patterns only to the cone of
interconnects (except V) as shown in Fig. 1. This is the
reason why victim line V is called pseudo-exhaustively
tested. The whole test setting (one victim line and 20
aggressor lines) is called a test cone. Thus, a test cone of a
victim line contains the victim itself and its left and right
effective aggressors.

Figure 1: An interconnect PE-BIST cone.

3. PE-BIST Test Cone Determination

 As we discussed in the last section, the effective
aggressors of a victim line can be identified by setting its
cut-off locality. Any aggressor with its locality (with
respect to the victim line) less than the cut-off locality is
considered as a significant aggressor, and thus should be
included in the pseudo-exhaustive test cone of the victim.
For a simple interconnect structure like a data bus, when
the cut-off locality is set, the test cone size can be easily
determined. For a simple interconnect bus structure, if the
cut-off locality is set to n, the test cone size is 2n+1 (2n
aggressors and one victim).

Circuit Block (Core)
V A A A A

…… ……
10 Lines 10 Lines

Circuit Block (Core)

361

 For an arbitrary interconnect structure, a long
signal line may span different routing regions, and the
aggressors to this line are distributed. We use Net
Interference Graph (NIG) to record the crosstalk between
different nets. Each node of a NIG represents an available
signal net. If two nets constitute a potential aggressor-
victim pair, there is an edge connecting them in the NIG.
If two nets are within cut-off locality range, they are
aggressor-victim pairs. Accordingly, there is an edge
connecting these two nets in the corresponding NIG.

Figure 2. Example interconnect structure in two

routing regions.

Figure 3. Merge of two regional NIGs into a global

NIG.

Fig. 2(a) and Fig. 2(b) show two interconnect

structures in two routing regions. Fig. 3 shows their
corresponding (regional) NIGs. For simplicity, we set the
cut-off locality to 1. This means we consider crosstalk
effects only between adjacent nets. Fig. 3(a) shows that
each node is connected to its adjacent nets in Fig. 2(a).
Note that in Fig. 3(a), the NIG is constructed from a
specific routing region, and is called a regional NIG
(RNIG). So is Figure 3(b). A global NIG (GNIG) is a
simple combination of all RNIGs. Fig. 3(c) shows an
example of the GNIG formed from two RNIGs in Figures
3(a) and 3(b). The weight of an edge in the GNIG is the
total number of times the edge appearing in all regional
NIGs. In this GNIG, the weight of edges 1-2, 4-5, 5-6 is 2
(Fig. 3), since those edges appear in both RNIGs.

Once we have the GNIG formed, we can determine
the effective aggressors for each victim net which in turn
indicates the test cone size requirement. For example, to
test net 3 in Fig 3, we need to exhaustively test its
aggressor nets 2, 4, 7 and 8. The number of aggressor nets
for a victim equals to the order of the victim vertex in the
GNIG. To test the victim net, we must cover all its
aggressors in the test set. For a node with a small order, its
test set is small. The PE-BIST test cone size must be large

enough to cover all the aggressors of the node which has
the maximum order (called m). By doing so, the test set
will also be able to cover all those nodes with order less
than m. So, the maximum order of all vertices in the
GNIG constitutes the minimum test cone size required by
the proposed PE-BIST method.

4. PE-BIST Test Pattern Generation and Delivery

As shown in Fig. 4, the test pattern generation circuit

for the interconnect PE-BIST method contains an LFSR-
driven aggressor signal generator, a victim signal
generator, a test pattern generation controller and a PE-
BIST controller. The LFSR is used to generate all
combinations of 0 and 1 logic values except the all-zero
test pattern. The aggressor signal generator (ASG) will
issue either a rising or falling transition upon excitation
from the LFSR. For example, an LFSR bit with logic 0 (1)
will generate a rising (falling) transition in the
corresponding aggressive line. The victim signal
generator (VSG) is used to generate signals for the victim
interconnect, and the signals include Q1 (constant logic 1),
Q0 (constant logic 0), rising and falling. The PE-BIST
controller is used to coordinate the operation of the entire
test pattern generation process. The output of the test
pattern generation controller is abstracted as “Channels”.
The test pattern generation controller works in such a way
that it will select one channel as the victim channel and
connect it to the victim signal generator. All other
channels are connected to the aggressor signal generator.
For each victim excitation pattern, the aggressor signal
generator will excite all aggressors to generate a pseudo-
exhaustive test set for this victim channel. Then, it will set
the next channel as the victim channel, and generate
pseudo-exhaustive patterns for that channel. This process
is repeated until each channel has been selected as a
victim channel.

For a test cone size n+1, there are n aggressor channels
and one victim channel. The total number of test patterns
is nn 2)1(4 ×+ . The reasons are: (1) there are n+1
different victims within this cone, (2) each victim will be
tested by 2n different test patterns from n aggressor lines,
and (3) each victim can have four different values (Q1,
Q0, rising and falling) for pseudo-exhaustive test patterns
from its aggressors.

Theorem 4.1 If all aggressors of a victim net and the
victim net are connected to different channels of the test
pattern generation controller, the victim net will be
pseudo-exhaustively tested. Proof: omitted.

 To assign nets to each channel, we begin with the
node with the maximum degree of connection. Then, we
assign different channel numbers to the node and all its

362

connected nodes. For the example interconnect structure
in Fig. 5, nets 3, 4, 2, 7, 8 are assigned to C1, C2, C3, C4,
C5, respectively. For nets 1 and 5, they are assigned C5
while net 6 is assigned to C3. There are multiple ways to
assign nets to channels. As long as all connected nets are
assigned different channels, they will be pseudo-
exhaustively tested during the test pattern generation
process. For example, when channel 3 is assigned victim
test patterns (nodes 2 and 6 are victim nets), channels C1,
C2, C4, C5 will apply exhaustive aggressor patterns to
aggressor nets 1, 3, 4, 5, 7, 8. Fig 6 shows the connection
of channels to the interconnect signal lines. Note that nets
2 and 6 (1, 5, and 8) are tested simultaneously.

Figure 5. PE-BIST test pattern channel assignment.

The test pattern generator can be distributed to

different circuit cores. There is no need for one central test
pattern generator. All test pattern generators are
synchronized such that any channel with the same label
will generate the same test pattern at any given time. Each
signal net driving an output cell from any circuit core will
be connected to the corresponding channel determined by
the labeling process discussed above.

Figure 6. PE-BIST test pattern delivery.

 Fig. 7 shows how the test pattern generators and
response analyzers are distributed in different circuit
cores. The figure shows how test patterns generated from
different cores can come together to form a pseudo-
exhaustive test cone. For the test cone shown in Fig. 7, the
test cone is formed by signal nets from different circuit
cores. Specifically, circuit 1 supplies channels C4 and C5
while circuit 2 supplies channels C1, C2 and C3. Since
those channels are independent from each other in the test
pattern generation process, they form a pseudo-exhaustive
test set.

In order to coordinate the entire test process, there is a
centralized test controller. The controller controls the

entire test process: setting the victim channel, triggering
the distributed test pattern generators to start, and
collecting the circuit responses after pseudo-exhaustive
test patterns are applied. Note that all test generators are
synchronized, and generate the same test pattern in each
clock cycle. For each victim channel under testing, the
corresponding response analyzer will collect the channel
responses by compressing them [5][7][8]. Once the victim
channel is pseudo-exhaustively tested, the PE-BIST
controller can then collect all responses from all
distributed response analyzers and perform central fault
processing. Note that a victim channel may drive several
victim lines. That is the reason why several test response
analyzers may be involved.

The whole testing process is straightforward. It would
be easy to reuse the existing BIST circuits, e.g., the
pseudo-exhaustive test pattern generators and the
signature analyzers that have been built in each core. The
most important thing in organizing the PE-BIST
architecture is the assignment of each net into a track by
interconnect routing, and the assignment of a test channel
for each net. Both assignments of tracks and channels
must accomplish the goal of pseudo-exhaustive testing
with a specific requirement of the cut-off locality and test
cone size.

Figure 4. Logic structure for PE-BIST test pattern

generation.

5. Post Global Routing for PE-BIST

Sections 3-4 discussed the basic idea of PE-BIST for

interconnect testing. Especially, Section 3 discussed how
to determine the PE-BIST test cone size, and in reality the
test cone size cannot be too large. Constrained by test time,
the total number of pseudo-exhaustive test patterns for
each test cone cannot exceed a specific number, e.g. 230. If
we have a GNIG with the maximum degree of all vertices
larger than 30, we have to find a way to control the degree
of that vertex so that it meets the test time constraint.

In modern routing technologies, the routing problem
is usually solved by using a two-stage approach: global
routing followed by detailed routing. The detailed routing
step includes track assignment and detailed net routing.
The relative physical track of each net plays a crucial role

363

in determining the NIG, which subsequently determines
the PE-BIST test cone. In order to make an interconnect
structure PE-BIST testable with a reasonable test cone
size, we must have control over the routing phase,
especially track assignment. So, we detach the track
assignment process from the detailed net routing phase as
an independent and intermediate step between global
routing and detailed routing process. This section will
discuss how to finish tracking assignment in a way that a
PE-BIST solution with a limited test cone size is possible.

Figure 7. PE-BIST distributed test pattern generation.

5.1 PE-BIST Routing Problem
Formulation of the PE-BIST Routing Problem: Given a
set of signal nets, their global routing solution, and a
specific pseudo-exhaustive test cone size with the desired
cut-off locality, the PE-BIST routing problem is to find a
net-track assignment solution so that all nets are PE-BIST
testable within the test cone size.

After global routing, each net is assigned to the
individual routing region but not yet put on a track. The
track assignment step will determine the NIG (both RNIG
and GNIG). If we want to have nets to be aggressor-
victim pairs, we can place them close to each other within
the cut-off locality range. On the other hand, if we want to
decouple two nets, we can put them far away from each
other. This will alter the topology of the NIG, which
subsequently decides the PE-BIST test cone size. By
placing nets into the right tracks, we can have control over
the NIG and ultimately over the PE-BIST test cone size.
This is why we choose to construct PE-BIST testable
interconnects in the post global routing phase.

In the process of building the GNIG, we first build
the RNIG for each region individually, and then combine
all RNIGs into the GNIG. In our track assignment

algorithm, we follow the same bottom-up building process:
starting with RNIG construction and then accumulating
RNIGs into the GNIG gradually. First, we start with a
routing region which has the least number of nets. We
choose such a routing region to start because it has the
least flexibility in placing those nets in the region. We
place nets into tracks one by one for each region. The net
is chosen by a cost function such that the net with the least
cost and satisfying the GNIG PE-BIST constraint will be
selected. The cost calculating process is repeated for every
net placement to dynamically reflect the cost change after
a net is placed. If no candidate net can be found for a
certain track because of the GNIG PE-BIST constraint, a
shield can be inserted to decouple certain nets placed in
the region. In the next section, we will illustrate the
algorithm with an example.

5.2 PE-BIST Routing Algorithm

Assume we have a GNIG processed so far given in
Fig 8. That is, currently, seven nets 1 to 7 have been
assigned to tracks in one or more regions, and their
corresponding relationship is presented in Fig. 8. The test
cone size is preset to 5 with the cut-off locality set to 2.
Now, we need to process a region which contains nets 4, 5,
6, 7, 8 after the global routing phase. Our mission is to
find a track assignment and shield insertion solution so
that the new GNIG still satisfies the PE-BIST requirement,
i.e., the max order of each vertex is less than the pseudo-
exhaustive test cone size: 5.

First, we extract the available NIG information for
the nets in the processed region from the GNIG. It is
essentially a sub-graph of the GNIG except that we add a
new vertex if the corresponding net was not present in the
GNIG. Fig. 9 shows the NIG information extracted from
the GNIG with a new node 8.

Figure 8. An example GNIG as starting point

Our next step is to place nets (4, 5, 6, 7, 8) into

different tracks so that the resultant GNIG still satisfies
the PE-BIST requirements. If we can find a net order such
that the GNIG remains the same, we say that it is cost-free
to incorporate this region into the GNIG. Most of the time,
we need to either modify the GNIG by adding new edges
(newly formed aggressor-victim relationships) or we need
to add extra shields to prevent nets from interfering with
each other. To illustrate this point, we use the above
example again.

364

Figure 9. PE-BIST Routing example GNIG (cont.).

First, we need to find the max clique in the extracted

NIG. A clique of a graph G requires that every node in the
clique (which is a sub-graph of G) is connected to each
other. In the NIG, this means every node (representing
each individual net) is allowed to interfere with each other.
Since we use a bottom-up approach, the clique
information can be updated every time when we add a
new edge to the graph, without exhaustively searching for
cliques. We have a clique in Fig. 9 formed by nets 4, 5, 6.
If several cliques are found with the same number of
nodes, we select the one whose sum of orders is maximum.
If a clique is not found, we select a two-node pair whose
sum of orders is maximum. In our example, we have only
one clique which contains nets 4, 5, 6. In this clique, we
further sort the vertices by their orders.

It is required that the order of every vertex in the
GNIG be less than the test cone size. On the other hand, if
a vertex’s order is less than the test cone size, the net
represented by that vertex can always be pseudo-
exhaustively tested. While we must limit the maximum
order of each vertex, we can add more edges to a vertex as
long as its order is smaller than the test cone size. If a
vertex has the maximum order, the corresponding net is
placed first since it has fewer freely available connections.
If two nets have the same order, we place the net with less
connections to nets in this region first. In our example,
both nets 5 and 6 have the highest order, followed by net 4.
But net 6 has two connections to nets (4, 5) in this region,
while net 5 has three connections to nets (4, 6, 7) in this
region. So, net 6 is placed first, followed by net 5. The
reasoning behind this is that nets with less connections to
nets in the region have a greater probability of introducing
new edges in the NIG when interacting with the rest of the
nets in the region. It is placed first to reduce its exposure
to those nets.

Now, we have an initial track assignment for nets 6-
5-4 adjacently. Since we set the cut off locality to 2, if we
add another net adjacent to net 4, that net will interfere
with both nets 5 and 4. If adding such interference causes
the order of a vertex greater than or equal to the pseudo-
exhaustive test cone size, it is not allowed to be added and
shield(s) must be added to avoid that interference. On the
other hand, if it does not result in that way, the net can be
placed adjacent to net 4. To identify which net is the best
candidate to be placed aside net 4, we first sort all
available nets according to the cost of placing each of
them adjacent to net 4.

The cost considers two factors: (1) the number of
edges to be added into the NIG, and (2) the number of
shields to be added to separate the nets. In our example, to
add net 7 aside net 4, we have to add a new edge between
nets 7 and 4. While to add net 8 aside net 4, we need to
add two edges: one is between nets 8 and 4, while the
other is between nets 8 and 5. Net 5 will have an order of
5 which is equal to the test cone size. So in order to put
net 8 aside net 4, a shield must be added between net 8
and 4. The cost of adding a shield is more than the cost of
increasing number of edges in the NIG. Net 7 has the
minimum cost. So we place net 7 adjacent to net 4 which
results in Fig 10. Note that we added one new edge
between nets 7 and 4. Our track assignment becomes nets
6-5-4-7.

Figure 10. PE-BIST Routing example GNIG (cont.).

Now, only net 8 is left. We have to place net 8 aside

net 7. But if we place net 8 aside net 7, net 8 will have
interference with both nets 7 and 4 which results in adding
two new edges in the NIG. It will force the vertex
representing net 4 to have an order of 5 which is no
smaller than the test cone size 5. This is prohibited. So,
we have to place a shield between nets 7 and 8. By
placing a shield between nets 7 and 8, there will be no
added edges in the NIG since net 8 will not interfere with
either net 7 or 4. The resulting track assignment is thus
nets 6-5-4-7-8, and the resultant GNIG is shown in Fig 11.
Comparing Fig. 8 and Fig. 11, one can find out that only
one new edge and one new shield are added in the GNIG
after the track assignment in this region. By repeating the
above algorithm to all regions, we can guarantee to get a
GNIG with the maximum order of all vertices less than
the test cone size.

The last step is channel assignment. As we have
explained in Section 4, for a given test cone size n, our
PE-BIST test generator must have n channels. For any net
in the GNIG, as long as the net and all its aggressors are
assigned different channels, all effective aggressors are
guaranteed to be involved in generating the pseudo-
exhaustive test patterns for the net. For the above example,
the test cone size is 5 so there are five channels C1, C2,
C3, C4, C5. We start with a vertex with the maximum
order, net 5 for example, and assign it to channel C1. Then,
its adjacent nets 1, 4, 6, 7 can be assigned to C2-C5 (Fig.
11). We have nets 4, 6 assigned to C3 and C4, so net 2
must be assigned to either C1, C2 or C5. We randomly
choose C1. We keep assigning channels until all nets are
assigned. The channel assignment problem can be solved
by graph-coloring methods [15]. In summary, two nets

365

can be assigned the same channel, if they are not
connected in the GNIG. The final channel assignment is
shown in Fig. 11, while the algorithm is shown in Fig. 12.
We emphasize that the victim line with the largest test
cone size dominates the test application time. Thus, serial
test application for different regions (with different test
cone size distribution) cannot reduce the test time.

Figure 11. PE-BIST Routing example GNIG (cont.).

Algorithm: PE-BIST Routing Algorithm

Input: 1. Routing region information: R;
2. Pseudo-exhaustive test cone size : n;

Output: Track assignment for each net and possible shield
insertion in each region;
Variable:

gNIG : global NIG;
 rNIG : regional NIG;
 track : net track assignment for R;
 netProcessList : list of nets to be processed;
Sort routing regions in R by the number of nets placed in each
routing region;
While (R not empty)
 Select routing region Ri with the least number of
 Nets;
 Insert all nets of Ri to netProcessList;
 Extract rNIG from gNIG for region Ri;
 Find the max clique in rNIG;
 Sort vertices in the clique by the order of each vertex, and

the number of its connections to vertices in current rNIG (if
necessary);
Assign vertices in the clique to tracks;
Delete all nets in the clique from netProcessList;
While (netProcessList not empty)
 For (each vertex in netProcessList)

Placement cost = number of edges and shields
added if placed in the track under consideration;

 Select vertex Vj with the least cost;
 If (order of any vertex in gNIG >= cone size n)
 add one shield into track;
 Assign vertex Vj into track;
 Delete vertex Vj from netProcessList;

 Update rNIG and gNIG to reflect the added edges
and shields;

 End For
End While

End While
Assign channels to each net with the final gNIG;
End Algorithm

Figure 12. PE-BIST routing algorithm

6. Experimental Results

The routing algorithm for PE-BIST testable
interconnects has been implemented in C++ and tested on
a P4, 2.6 GHz, 1G memory, IBM PC. Since we could not
find routing benchmarks for SoC circuits, we selected
several MCNC benchmarks which contain a number of
macro cells to simulate SoC circuits. The specification of
each circuit is listed in Table 1. The grid size refers to the
size of a global routing graph which is specified by the
numbers of rows and columns. Each MCNC benchmark is
placed by an SA-based floorplanner [16], and then
gridized to form a global routing graph. Since the power
lines have been pre-routed in our Over The Cell (OTC)
model, we skip the routing of possible power lines in the
net list. The global routing is completed by a maze router
[17].

Table 2 shows how cut-off locality affects the
number of shields required to route the PE-BIST testable
interconnects for benchmark Xerox. Here, overhead is
defined as the total shield length divided by the total
signal net length. It can be observed that the overhead
increases steadily as the cut-off locality increases. This is
due to the fact that a net is exposed to more aggressors as
the locality increases. This creates more edges in the NIG
under construction, and thus more shields are used to limit
the order of each vertex in the NIG. We emphasize again
that the cut-off locality determines whether two nets are
aggressor-victim pairs. The larger the cut-off locality is,
the more nets are potential aggressor-victim pairs. This
results in more connections between nodes in the NIG.
However, the test cone size determines the maximum
allowable order of each node in the NIG. More potential
aggressor-victim pairs lead to more shields inserted in
order to control the maximum order of each node within
the test cone size.

Test cone size also has effects on the shielding
overhead. As the test cone size decreases, the maximum
allowable aggressors (i.e., the vertex degree) are limited,
and thus more shielding insertions are required to control
the maximum order of vertices in the NIG. Table 3 shows
the shield overhead with the test cone size from 10 to 30
and the cut-off locality equal to 2. The corresponding
shielding overhead decreases from 19.6% to 2.0%.

Other MCNC benchmark circuit results are listed in
Table 4 and Table 5 respectively. Table 4 shows the result
with the cut-off locality equal to 1, while Table 5 with the
cut-off locality equal to 2. As we can see, with the test
cone size equal to 30, the shielding overhead in each case
is very small, less than 7%. For ami33 and apte, no
shielding overhead is induced. Note that the cut-off
locality with a value 1 or 2 is reasonable for RC
interconnects as discussed in Section 2. It is also
reasonable for RLC interconnects based on the concept of
aggressor group (Section 2).

Table 1. List of MCNC benchmark circuits

366

Chip # Macro Cell # Nets # Pins Grid Size
ami33 33 119 442 10x8
ami49 49 408 953 38x39
apte 9 94 266 52x52
hp 11 83 309 25x21

xerox 10 195 696 29x32

Table 2. Shielding overhead vs cut-off locality
Xerox, test cone size=30, net length=4219

Cut-Off Locality Shield Length Overhead
1 15 0.4%
2 84 2.0%
3 152 3.6%
4 265 6.3%
5 271 6.4%
6 356 8.4%

Table 3. Shielding overhead vs test cone size

Xerox, cut-off locality=2, net length=4219
Test Cone Size Shield Length Overhead

30 84 2.0%
24 164 3.9%
20 253 6.0%
14 526 12.5%
10 830 19.6%

Table 4. MCNC benchmark results

(with cut-off locality=1, test cone size=30)
Chip Net Length Shield Length Overhead

ami33 638 0 0%
ami49 9354 226 2.4%
Apte 3876 0 0%
Hp 1522 0 0%

Xerox 4219 15 0.4%

Table 5. MCNC benchmark results
(with cut-off locality=2, test cone size=30)

Chip Net Length Shield Length Overhead
ami33 638 0 0%
ami49 9354 576 6.2%
apte 3876 0 0%
hp 1522 3 0.2%

xerox 4219 84 2.0%

7. Conclusion

In the paper, we proposed an efficient routing method
for PE-BIST to test high speed interconnects. The PE-
BIST concept and the related routing method can be
applied to any interconnect structure which exhibits
crosstalk locality. It can be applied to RC interconnects as
well as RLCK interconnects with proper shielding
insertion. With the aid of the global NIG and regional
NIGs, the routing algorithm can efficiently assign
interconnects to different tracks such that the number of
shields added is as small as possible, while the goal of
pseudo-exhaustive testing for interconnects can be
achieved with reasonable test application time. Simulation
results demonstrate the feasibility of the proposed
interconnect test approach and the routing method.

Acknowledgements

This work was funded in part by National Science
Foundation, USA, under grant CCF-0541103.

References
[1] L. Green, “Simulation, modeling and understanding the
importance of signal integrity,” IEEE Circuit and Devices
Magazine, vol. 15, issue 6, pp. 7-10, Nov. 1999.
[2] J. Xiong, L. He, “Full-chip routing optimization with RLC
crosstalk budgeting,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 23, no. 3, pp. 366-377,
March 2004
[3] N. Hanchate, N. Ranganathan, “Simutaneous interconnect
delay and crosstalk noise optimization through gate sizing using
game theory,” IEEE Trans. on Computers, vol. 55, no. 8, pp.
1011-1023, August 2006.
[4] M.. Cuviello, S. Dey, X. Bai, and Y. Zhao, ”Fault modeling
and simulation for crosstalk in system on chip interconnects,” In
Proc. International Conf. on Computer-Aided Design, pp. 297-
303, 1999.
[5] X. Bai, S. Dey and J. Rajski, “Self-test methodology for at-
speed test of crosstalk in chip interconnects,” in Proc. Design
Automation Conf., pp. 619-624, 2000.
[6] L. Chen, X. Bai and S. Dey, “Testing for interconnect
crosstalk defects using on-chip embedded processor cores,” in
Proc. Design Automation Conf., pp. 317-322, 2001.
[7] M. Nourani and A. Attarha, “Built-in self-test for signal
integrity.”, In Proc. Design Automation Conf., pp. 792-797,
2001.
[8] A. Attarha and M. Nourani, “Testing interconnects for noise
and skew in giga Hertz SoCs.”, In Proc. International Test Conf.,
pp. 305-314, 2001.
[9] A. Attarha and M. Nourani, “Test pattern generation for
signal integrity faults on long interconnects,” In Proc. VLSI Test
Symposium, pp. 336-341, 2002.
[10] J. Liu, W. B. Jone, and S. R. Das, “Pseudoexhaustive built-
in self-testing of signal integrity for high-speed SoC
interconnects,” Instrumentation and Measurement Technology
Conference, May 2007.
[11] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
systems testing and testable design, Computer Science Press,
New York, NY, 1990.
 [12] E. J. McCluskey, “Verification testing - a pseudoexhaustive
test technique,” IEEE Trans. on Computers, vol. C-33, no. 6, pp.
541-546, June 1984.
[13] E.J. McCluskey and S. Bozorgui-Nesbat, “Design for
autonomous test,” IEEE Trans. on Computers, vol. C-30, no. 11,
pp. 866-875, Nov. 1981.
[14] H. Lei and L. M. Kevin, “Simultaneous shield insertion and
net ordering for capacitive and inductive coupling
minimization,“ ACM International Symposium on Physical
Design, 2000: 55-60
[15] J. A. Bondy and U. S. R. Murty, Graph theory with
applications, North-Holland, New York, 1982.
[16] http://www. cse.ucsc.edu/research/surf/GSRC/progress.html
[17] C.Y. Lee, “An algorithm for path connection and its
application,” IRE trans. on Electronic Computer, vol. EC-10, pp.
346-365, September 1961

367

