
Dynamically Compressible Context Architecture for
Low Power Coarse-Grained Reconfigurable Array

Yoonjin Kim and Rabi N. Mahapatra

Embedded Systems & Co-Design Group, Dept. of Computer Science
Texas A&M University, College Station, TX 77843

{ykim, rabi}@cs.tamu.edu

Abstract
Most of the coarse-grained reconfigurable array architec-

tures (CGRAs) are composed of reconfigurable ALU arrays
and configuration cache (or context memory) to achieve high
performance and flexibility. Specially, configuration cache is
the main component in CGRA that provides distinct feature
for dynamic reconfiguration in every cycle. However, fre-
quent memory-read operations for dynamic reconfiguration
cause much power consumption. Thus, reducing power in
configuration cache has become critical for CGRA to be
more competitive and reliable for its use in embedded sys-
tems. In this paper, we propose dynamically compressible
context architecture for power saving in configuration cache.
This power-efficient design of context architecture works
without degrading the performance and flexibility of CGRA.
Experimental results show that the proposed approach saves
up to 39.72% power in configuration cache with negligible
area overhead.

1. Introduction
In order to provide high quality multimedia on mobile and

embedded systems, various efficient algorithms for au-
dio/video data transfer and processing have been developed.
These algorithms are complex and characterized by data-
intensive computations. For such applications, a coarse-
grained reconfigurable architecture (CGRA) can provide high
performance flexibility. CGRA has higher performance than
general purpose processor and wider applicability than ASIC.
In spite of the above advantages, the deployment of CGRA

is prohibitive due to its significant power consumption. This
is due to the fact that CGRA is composed of many computa-
tional resources such as ALU, multiplier, divider and con-
figuration cache to perform frequent memory-read operations
for dynamic reconfiguration in every cycle. The configura-
tion cache is the main component in CGRA that provides
distinct feature for dynamic configuration. Even though con-
figuration cache plays an important role for high performance
and flexibility, it suffers from large power consumption.
Therefore, reducing power consumption in the configuration
cache has been a serious concern for reliability of embedded
systems. This paper addresses the power reduction issues in
CGRA and provides a framework to achieve this. The paper
has following contribution:
 Design methodology for dynamically compressible context

architecture and a new cache structure to support the con-

figurability are presented to reduce the power consumption in
configuration cache without performance degradation.
This paper is organized as follows. After mentioning the

related work in Section 2, we describe coarse-grained recon-
figurable architecture and its context architecture in Section 3.
In Section 4, we present the motivation of our approach.
From Section 5 to Section 10, we describe a new design flow
to implement dynamically compressible context architecture
with an example. Then we show final context architecture
and explain context evaluation in Section 11 and 12. We
show the experimental results in Section 13 and conclude the
paper in the Section 14.

2. Related works
Most of the research works in CGRA have been carried out

in three different aspects: architecture exploration, code
compilation and mapping, and physical implementation [1].
The architecture exploration flows that have been suggested
in [2][3] generate a good instance of CGRA considering area
and performance without power. In [4] the authors have pro-
posed energy-aware interconnection exploration to minimize
energy by changing the topology between global register file
and function units. However, this exploration only provides
the trade-off between performance and energy. In the case of
code compilation and mapping, power-conscious configura-
tion cache structure and code mapping are proposed in [9].
They classified the computation model of loop pipelining
into two cases (spatial mapping and temporal mapping) and
suggested spatial mapping with context reuse and temporal
mapping with context pipelining for power saving of each
case. Even though they achieved power reduction compared
with the base architecture, their proposed techniques are
dependent on specific computation model of loop pipelining.
Therefore, those techniques cannot be applied to CGRAs
with other computation models. Many reconfigurable archi-
tectures have been implemented with various technologies
[6][7][8][10]. Most of these researches have focused on effi-
cient design with respect to small area and high performance.
In [7][10], even though authors have presented power estima-
tion data of the implemented architectures, these are only
accessorial results and don’t mean power/energy-aware im-
plementation.

3. Preliminaries
Typically, a CGRA consists of a main processor, a Recon-

figurable Array Architecture (RAA), and their interface [1].
The RAA has the array composed of identical processing

1-4244-1258-7/07/$25.00 ©2007 IEEE 395

elements (PEs) containing functional units and a few storage
units. In addition, RAA has a data buffer to provide operand
data to PE array and a configuration cache (or context mem-
ory) to store the context words used for configuring the PE
array elements.
Figure 1 shows an example of PE structure and context ar-

chitecture for MorphoSys [6]. 32-bit context word specifies
the function for the ALU-multiplier, the inputs to be selected
from MUX_A and MUX_B, the amount and direction of
shift of the ALU output, and the register for storing the result
as Figure 1 (a). Context architecture means organization of
context word with several fields to control resources in a PE
as Figure 1 (b).

ALU+MULT

MUX_A MUX_B

SHIFT

C
o
n
t
e
x
t

R
e
g
i
s
t
e
r

R0 R1 R2 R3

I M T B XQ R0-R3

L R C VE HE U D L I

Constant

Register File

O/P REG

To data
bus

To HE To VEC To other RCs

16 bit data

8

8

8

16

28

16

64
12

16

28

28

co
nt

ex
t

 w
or

d
 f

ro
m

co

nt
ex

t
 m

em
or

y

11
…

0
18

…
16

22
…

19
26

…
23

31
30

29
…

.2
8

15
…

12
27

11
…

0
18

…
16

22
…

19
26

…
23

31
30

29
…

.2
8

15
…

12
27

Write_EXPR

Write_RF_En

REG_FILE

RS_LS

ALU_SFT

MUX_A

MUX_B

ALU_OP

Constant

Empty

SUB_OP
Co

nt
ex

t W
or

d
Fi

eld
s

(a) PE structure (b) Context architecture

Figure 1. PE structure and context architecture of Mor-
phosys.

The context architectures of other CGRAs such as
[2][3][4][5][7][8][9] are similar to the case of MorphoSys
although there is a wide variance in context-width and kind
of fields used by different functionality.

4. Motivation
4.1. Power consumption by configuration cache
By loading the context words from the configuration cache

into the array, we can dynamically change the configuration
of the entire array within just one cycle. However, such dy-
namic reconfiguration of CGRA causes many SRAM-read
operations in configuration cache. In [9], power breakdown
for the CGRA running 2D-FDCT was proposed with gate-
level implementation at 0.18 ㎛ technology based on Mor-
phoSys architecture. It has been shown that the configuration
cache spends about 43% of the overall power, which is the
second largest after the PE arrays consuming 48% of overall
power budget. This is because the configuration cache per-
forms SRAM-read operations to load the context words in
every cycle at run time.

4.2. Valid bit-width of context words
 When a kernel is mapped onto CGRA and application gets
executed, the used context fields are limited to types of op-
erations of the kernel executed at run time. Furthermore,
operation types of an executed kernel on PE array are
changed in every cycle. It means the valid bit-width of exe-
cuted context word is frequently less than the full bit-width
of a context word even though full bit-width can be less often
used. For statistical evaluation of valid bit-width of contexts,
we selected 32-bit context architecture based on [9] and

mapped several kernels onto its PE array in order to maxi-
mize the utilization of the context fields. Figure 2 shows the
results for various benchmark kernels and critical loops in
real applications. In Figure 2, average bit-width is the aver-
age value of valid bit-widths of all the executed context
words at run-time and the maximum bit-width is the maximal
valid bit-width among all the context words considered at
run-time. The statistical result shows that average bit-width
varies from 7 to 11 bits and the maximum bit-width is less
than or equal to 18 bits whereas the full bit-width is 32-bit.

0 2 4 6 8 10 12 14 16 18 20

*First_Diff

*Tri- Diagonal

*State

*Hydro

*ICCG

**Inner Product

**24-Taps FIR

Matrix-vector multiplication

Mult loop in FFT

Complex_Mult in MPEG4 AAC dec'

ITRANS in H.264 dec'

2D-FDCT in H.263 enc'

2D-IDCT in H.23 enc'

SAD in H.263 enc'

Quantization in H.263 enc'

Dequantization in H.263 enc'

Bit-width

Kernel
average bit-width
Maximum bit-width

*Livermore loops benchmark [13], **DSPstone [14]

Figure 2. Valid bit-width of context words.

4.3. Dynamic context compression for low
power CGRA
If the configuration cache can provide only required bits

(valid bits) of the context words to PE array at run time, it is
possible to reduce power consumption in configuration cache.
The redundant bits of the context words can be set to disable
and make those invalid at run time. That way, one can
achieve low-power implementation of CGRA without per-
formance degradation while context architecture dynamically
supports both the cases at run time: one case is uncompressed
context word with full bit-width and another case is com-
pressed context word with setting unused part of configura-
tion cache disabled. In order to support such a dynamic con-
text compression, we propose a new context architecture and
configuration cache structure in this paper.

5. Design flow of dynamically compressible
context architecture
In order to design and evaluate dynamically compressible

context architecture, we propose a new context architecture
design flow. Entire design flow is shown in Figure 3. This
design starts from context architecture initialization and fi-
nally one can determine whether the initially uncompressed
contexts can be compressed or not by context evaluator.
From section 6 to section 9, we describe more detailed proc-
ess for each stage in entire design flow.

396

Field-Sequence Graph
Generation

APP1 APP3APP2

Domain

Field Positioning

Context Architecture
Initialization

Compressible
Context Architecture

Can it be
compressed?

Yes No

Context Evaluator

Compressed

ConstraintsField- Control Signal
Generation

Initial ContextUncompressed
Context

Uncompressed

Field-Grouping

Figure 3. Entire design flow.

6. Context architecture initialization
Context architecture in CGRA design dependents on archi-

tecture specification. In the process of architecture specifica-
tion, CGRA structure is evolved with PE array size, PE func-
tionalities and their, interconnect scheme. The proposed ap-
proach starts from the conventional context architecture se-
lection and makes it dynamically compressible context archi-
tecture through the proposed design flow. We have defined
generic 32-bit context architecture as an example to illustrate
the design flow to support the kernels in Figure 2. It is simi-
lar to the representative CGRAs such as MorphoSys [6],
Remark [1], ADRES [2][4], PACT_XPP [7] or [9]. The PE
structure and bit-width of each field are shown in Figure 4. It
supports various arithmetic and logical operations with two
operands (MUX_A and MUX_B), predicated execution
(PRED), Arithmetic saturation (SAT_logic), shift operation
(SHIFT) and saving temporal data with register file
(REG_FILE). In Figure 4, all of the fields are classified by
‘Control’ of 2 cases – ‘Processing element’ and ‘context
register’. It means that each case is configured by the fields
included in that case. Furthermore, Figure 4 shows the bit-
width of each field and the component index to identify each
component configured by each field.
Even though each field can be positioned on context word

under conventional design flow, this initialization stage does
not define any field position. It means field position for un-
compressed case should be assigned by considering context
compression.

MUX A MUX B

To data buffer or neighbor PEs

Register fileShifter

A L U

To pred’ bus

from data buffer, neighbor PEs or regisiter file

Reg #0
Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

Context
register

Processing
Element

Control

[11,12,13,14,15]5-bitALU_OP

[18,19,20,21,22,
23]6-bitSHIFT

[16,17]2-bitSAT

[7,8,9,10]4-bitMUX_B

-6-bit

[25]1-bitPRED

[24]1-bitWDB_EN

CTXT_CTRL

[3,4,5,6]4-bitMUX_A

[0,1,2]3-bitREG_FILE

Component
index

Bit-
widthField name

Context
register

Processing
Element

Control

[11,12,13,14,15]5-bitALU_OP

[18,19,20,21,22,
23]6-bitSHIFT

[16,17]2-bitSAT

[7,8,9,10]4-bitMUX_B

-6-bit

[25]1-bitPRED

[24]1-bitWDB_EN

CTXT_CTRL

[3,4,5,6]4-bitMUX_A

[0,1,2]3-bitREG_FILE

Component
index

Bit-
widthField name

Figure 4. PE structure.

7. Field grouping
All of the context fields are grouped into three sets - neces-

sary set, supplementary set and unnecessary set. Necessary
set includes indispensable fields for all of the PE operations
and supplementary set includes optional fields for PE opera-

tions. Unnecessary set is composed of fields unrelated to PE
operations. It means necessary fields should be included in
context words even if context words are compressed whereas
supplementary and unnecessary fields can be excluded out of
context words. In addition, we classify supplementary set
into two subsets. One is a subset composed of fields depend-
ent on the field of ‘ALU_OP’ and another is a subset com-
posed of fields independent of ‘ALU_OP’. This classification
is necessary for generating field control signals in Section 9.
Figure 5 shows field-grouping based on the context initializa-
tion presented in Section 6.

ALU-OP
dependent

ALU-OP
independent

PREDPRED1-bit1-bit

MUX_BMUX_B4-bit4-bit

SHIFTSHIFT

WDB_ENWDB_EN

6-bit6-bit

1-bit1-bit

REG_FILEREG_FILE3-bit3-bit

SATSAT2-bit2-bit

Field1Field1 Field2Field2 Field3Field3

Field-Set

Necessary for
PE operation

Unnecessary for
PE operation

Supplementary
for PE operation

MUX_AMUX_A

ALU_OPALU_OP

4-bit4-bit

9-bit9-bit
CTXT_CTRLCTXT_CTRL6-bit6-bit

SHIFTSHIFT

PREDPRED

SATSAT

5-bit5-bit

1-bit1-bit

1-bit1-bit

REG_FILEREG_FILE2-bit2-bit

MUX_BMUX_B4-bit4-bit

Figure 5. Field grouping.

8. Field sequence graph generation
Field sequence graph (FSG) is generated from context ar-

chitecture initialization and field grouping. FSG is a directed
graph composed of necessary and supplementary fields and it
shows possible field combinations for PE operations based
on PE structure. Each vertex of FSG corresponds to a neces-
sary or supplementary field in field grouping and each edge
of FSG shows a possible field combination between two
fields. The possible field combinations can be found by ver-
tex tracing in the edge directions and the combinations
should include all of the necessary fields. Furthermore, sup-
plementary fields can be skipped out of vertex tracing to
search possible field combinations. Figure 6 shows an exam-
ple of FSG from Figure 6 and Figure 5. While searching
possible field combinations, some times it is possible (for
example, MUX_A, ALU_OP, SAT is possible) whereas
(MUX_A, ALU_OP, SAT, PRED) is not possible. FSG is a
useful data structure for field positioning as described in
Section 10.

ALU-independent fieldALU-independent fieldField

Necessary fieldNecessary fieldField

MUX A MUX B

To data buffer or neighbor PEs

Register fileShifter

A L U

To pred’ bus

REG_FILEREG_FILE3-bit3-bit

from data buffer, neighbor PEs or regisiter file

Reg #0
Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ bus

MUX_AMUX_A4-bit4-bit

MUX_BMUX_B4-bit4-bit

ALU_OPALU_OP5-bit5-bit

SATSAT2-bit2-bit

SHIFTSHIFT6-bit6-bit

WDB_ENWDB_EN1-bit1-bit

PREDPRED1-bit1-bit

[0~2][0~2]

[3~6][3~6]

[7~10][7~10]

[11~15][11~15]

[16~17][16~17]

[18~23][18~23]

[24][24]

[25][25]

bit-width

Field name

component index

ALU_OP

MUX AMUX B

ALU
SFT

PRED

WDB
EN

REG
FILE

SAT

4 4

5

2 1

6

3 1

ALU-dependent fieldALU-dependent fieldField

n : Bit-width of fieldn : Bit-width of fieldField
n

Figure 6. Field sequence graph.

397

9. Generation of Field control signals
When contexts are compressed, supplementary fields are

relocated on compressed space and the positions of these
fields may be overlapped with each other. Therefore, each
supplementary field should be disabled when it is not being
compressed in the context word. It means that compressed
context should have control information for all of the sup-
plementary fields in order to make unused fields disable. In
this section, control signals generation for supplementary
fields has been described.

ALU_OP [5-bit]

1

1

1

0

0

A1

1

1

1

1

1

A2

1

1

1

1

1

A3

0

1

1

1

1

A4

1A ≤ B

1A!

0A < B

1A || B

0A && B

A0

Logical
Operation

ALU_OP [5-bit]

1

1

1

0

0

A1

1

1

1

1

1

A2

1

1

1

1

1

A3

0

1

1

1

1

A4

1A ≤ B

1A!

0A < B

1A || B

0A && B

A0

Logical
Operation

ALU_OP [5-bit]

A0A1A2A3A4

ALU_OP [5-bit]

A0A1A2A3A4

PRED_ENPRED_ENMUX_B_ENMUX_B_EN

OR

AND AND

CTRL BLOCK

(a) Logical operations (b) Control signals

Figure 7. Control signals for ‘MUX_B’ and ‘PRED’.

9.1. Control signals for ALU-dependent fields
If the truth table of ‘ALU_OP’ is classified by the operation

type, enable/disable signals for ALU-dependent fields can be
generated from ‘ALU_OP’ with some combinational logic.
Figure 7 (a) shows the truth table manipulated by classifying
operations. MSB (A4) of ‘ALU_OP’ is used for classifying
operations according to the number of operands. For example,
MSB =1 is used for the operations with two operands and
MSB =0 is used for the operations with one operand. In addi-
tion, A3~A0 are used for classifying logical operations. Based
on the truth table, we can generate control signals for two
fields with some combinational logic as Figure 7 (b). We
define such a combinational logic as ‘CTRL BLOCK’.

9.2. Control signals for ALU-independent
fields

In order to control ALU-independent fields when context
words are compressed, the enable/disable flag bit on each of
the ALU-independent field should be merged with a neces-
sary field. Figure 8 (a) shows the process that 1-bit flags of
ALU-independent fields are merged with ‘ALU_OP’. After
flag merging, the FSG should be updated because the bit-
widths of some of the fields are changed and 1-bit field such
as ‘WDB_EN’ is no longer valid in FSG. Figure 8 (b) shows
an updated FSG with modified bit-widths of some of the
fields.

REG_FILEREG_FILE

WDB_ENWDB_EN

3-bit3-bit

1-bit1-bit

SHIFTSHIFT6-bit6-bit

ALU_OPALU_OP5-bit5-bit

1-bit enable/disable flag

ALU_OPALU_OP9-bit9-bit

ALU_SFTALU_SFT5-bit5-bit

REG_FILEREG_FILE2-bit2-bit

SATSAT1-bit1-bit

SATSAT2-bit2-bit

Merging

MUX AMUX B

ALU
SFT

PRED

REG
FILE

SAT

4 4

9

1 1

5

2

ALU_OP

(a) Flag merging (b) Updated FSG

Figure 8. Updated FSG from flag merging.

10.1. Field positioning on uncompressed con-
text word

All the fields should have default positions for the case
when contexts cannot be compressed. First of all, the neces-
sary fields are positioned to the part near to MSB and the
unnecessary fields are positioned near the LSB as shown in
Figure 9. Then the supplementary fields are positioned on the
available space between the already occupied sides of context
word. For supplementary field positioning, the bit-width of
compressed context word should be determined. Compressed
bit width can be different according to the definition of the
capacity of compressed context word. The large capacity of
compressed context word can show high compression ratio
but the amount of power reduction is limited by long bit-
width. However, the little capacity of compressed context
word may cause low compression ratio but the power reduc-
tion ratio can be high in short bit-width. To prevent the ex-
treme cases (much short or much long bit-width of com-
pressed context word), we determine compressed bit-width
based on following criterions.
I. Compressed context words should be able to support

all of the ALU-dependent fields.
II. Compressed context words should be able to include

at least an ALU-independent field.

REG_FILE
A7, A6

SHIFT
A12…A8

SAT
A13

ALU_OP
A31…A23

MUX_A
A22…A19

MUX_B
A18…A15

CTXT_CTRL
A5…A0

PRED
A14

REG_FILE
A7, A6

SHIFT
A12…A8

SAT
A13

ALU_OP
A31…A23

MUX_A
A22…A19

MUX_B
A18…A15

CTXT_CTRL
A5…A0

PRED
A14

Fields in max-path others
Compressed width : 18-bit

Uncompressed width : 32-bit

MSB LSB

Field1Field1 Field2Field2 Field3Field3

Field-Set

Necessary for
PE operation

Unnecessary for
PE operation

Supplementary
for PE operation

MUX_AMUX_A

ALU_OPALU_OP

4-bit4-bit

9-bit9-bit
CTXT_CTRLCTXT_CTRL6-bit6-bit

SHIFTSHIFT

PREDPRED

SATSAT

5-bit5-bit

1-bit1-bit

1-bit1-bit

REG_FILEREG_FILE2-bit2-bit

MUX_BMUX_B4-bit4-bit

Figure 9. Default field positioning.

To satisfy criterions, we determine the longest field combi-
nation showing the maximum bit-width among I and II. The
maximum width for satisfying I and II is found to be 18-bit
that consists of ‘ALU_OP’, ‘MUX_A’, ‘MUX_B’ and
‘PRED’. Therefore, 18-bit is the compressed bit-width. Sup-
plementary fields that are included in the longest field com-
bination are preferentially positioned on the compressed zone
near the MSB and other fields are positioned on uncom-
pressed zone near the LSB as Figure 9. After this, the posi-
tions of the necessary fields on FSG are firmly determined
and the positions of the field control signals are also deter-
mined because they are included in ‘ALU_OP’ as necessary
field.

10.2. Field positioning on compressed context
word
 This stage is for positioning fields on compressed context
word to guarantee that all the possible field combinations are
not exceeding the compressed bit-width. Therefore, first of

398

all, all the possible field combinations should be found. This
process can be achieved by searching them from FSG and
then generating field concurrency graph (FCG) such as Fig-
ure 10 (a). The FCG shows the concurrency between the
supplementary fields. Therefore the FCG is used for prevent-
ing position that is overlapping between the concurrent sup-
plementary fields. An edge between two fields means that the
two fields are included in one of the possible field combina-
tions. Even though this example does not show concurrency
between more than 2 supplementary fields, such a case can
be represented by adding a dummy field connected with the
fields as Figure 10 (b).

MUX B

SHIFT

PRED

REG_
FILE

SAT

4

1 1

5

2

Field sequence graph Field concurrency graph

MUX AMUX B

ALU
SFT

PRED

REG
FILE

SAT

4 4

9

1 1

5

2

ALU_OP

Field#1

Field#3

Field#2Dummy

 (a) FCG from FSG (b) FCG with dummy vertex

Figure 10. Field concurrency graph.

Based on a given FCG, the next step is to position the sup-
plementary fields on compressed context word. The position-
ing means that some supplementary fields have additional
positions as well as default positions on uncompressed con-
text words. To select a position among default and additional
positions, multiplexers can be used that are composed of
multiple position inputs and one feasible position output.
Therefore, in this step, the field positioning is a mapping
between inputs, outputs and control signals for multiplexers
connected with the supplementary fields. Thus, we propose a
field positioning and port mapping algorithm for the multi-
plexers which is outlined in [15].
Input to the algorithm is FCG and the output is multiplexer

port mapping graph (PMG) such as in the Figure 11. Each
vertex of PMG corresponds to an input or control signal of
multiplexer and each edge shows the relationship between
control signal and a position that is selected by the weight of
the edge from control signals such as ‘SAT_EN’,
‘MUX_B_EN’, etc. Then the outputs of multiplexers are
connected with the component index defined in Figure 4.
Therefore we can implement the multiplexers for the sup-
plementary fields by the PMG.

REG_
FILE0

REG_
FILE1

SAT1

PREDZERO

SHIFT0

ZERO

SAT0

SHIFT1

MUX_B

PRED_
_EN

SAT_
EN

MUX_B
_EN

SHIFT_
EN

CMP_
EN

1

0

1

1

1

1

1

1

0

00

1

ZERO
MUX_B

MUX_B_EN

ZERO
PRED

PRED_EN

REG_
FILE_EN

0

SAT0
SAT1

SAT_EN

CMP_EN

SHIFT0
SHIFT1

SHIFT_EN

CMP_EN

REG_FILE0
REG_FILE1

REG_FILE_EN

CMP_EN

MUX_B[3, 0]

SAT[0]

SHIFT[4, 0]

REG_FILE[1, 0]

PRED[0]

Figure 11. Multiplexer port mapping graph.

11. Compressible context architecture
 After the field positioning, we have generated a specification
of dynamically compressible context architecture like one in
the Figure 12. Figure 12 (b) shows the final field layout of
compressible context architecture. ‘REG_FILE’, ‘SHIFT’
and ‘SAT’ have double positions for compressed and un-
compressed cases. Figure 12 (a) shows a modified structure
between a PE and a cache element (CE). New cache element
is composed of CE1 and CE2 and cache control unit provides
compression information from port ‘CMP’ whether executed
contexts are compressed or not. CE1 is always selected but
CE2 is not selected under compression (‘CMP’=1) to remove
power consumption in CE2.

MUX A MUX B

To data buffer or neighbor PEs

Register file

Shifter

A L U

To pred’ bus

from data buffer, neighbor PEs or regisiter file

Reg #0
Reg #1

Reg #3

Register

SAT_logic

Reg #2

from pred’ busC
O
N
T
E
X
T

R
E
G
I
S
T
E
R

`

Others

SFT_EN
REG_EN
WDB_EN

SAT_EN

1

23

31

CTXT_CTRL

REG_FILE0

SHIFT0

SAT0
PRED_EN

MUX_B

MUX_A

ALU_
OP

3

2

8

9

10

11

0

4

5

6

7

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

Others

SFT_EN
REG_EN
WDB_EN

SAT_EN

1

23

31

CTXT_CTRL

REG_FILE0

SHIFT0

SAT0
PRED_EN

MUX_B

MUX_A

ALU_
OP

3

2

8

9

10

11

0

4

5

6

7

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

PRED_EN

MUX_B_EN

zero

zero

CTRL
BLK

REG

Cache CTRL Unit

SEL
CMP

SEL

SEL

CE #1

CE#2

New Cache Element

(a) Modified structure between a PE and a CE.

SHIFT1
A18… A14

SHIFT1
A18… A14

REG_
FILE1

A18, A17

REG_
FILE1

A18, A17

REG_
FILE0

A7, A6

SHIFT0

A12…A8

SAT0

A13

ALU_OP

A31…A23

MUX_A

A22…A19

MUX_B

A18…A15

CTXT_CTRL

A5…A0

PRED

A14

REG_
FILE0

A7, A6

SHIFT0

A12…A8

SAT0

A13

ALU_OP

A31…A23

MUX_A

A22…A19

MUX_B

A18…A15

CTXT_CTRL

A5…A0

PRED

A14

compressed width : 18-bit

entire width : 32-bit

SAT1
A14

SAT1
A14

(b) Field layout of compressible context architecture.

Figure 12. Compressible context architecture.

12. Context evaluation
 The context evaluator in Figure 3 determines whether ini-
tially uncompressed contexts can be compressed or not. This
evaluation process can be implemented by checking the fact
that a given context word is compared with one of the possi-
ble field combinations not exceeding compressed bit-width.
Using FCG, we can easily check this and generate com-
pressed context words with using position information from
PMG.

13. Experiments and Results

13.1. Experimental setup
We have implemented entire design flow in Figure 4 with

C++. We have initialized context architecture as the example
described in Section 6 ~ 11. The implemented design flow
generated the specification of dynamically compressible
context architecture. For quantitative evaluation, we have

399

designed two CGRAs based on the 8x5 reconfigurable array
at RT-level with VHDL – one is conventional base CGRA
and the other is the proposed CGRA supporting compressible
features in context architecture. The architectures have been
synthesized using Design Compiler [10] with TSMC 0.18 ㎛
technology [11]. We have used DesignWare library [10] for
the frame buffer and configuration cache. ModelSim [12] and
PrimePower [10] tools have been used for gate-level simula-
tion and power estimation. To obtain the power consumption
data, we have used the kernels (Figure 3) for simulation with
operation frequency of 100MHz and typical case of 1.8V
Vdd and 27℃.

13.2. Results
The synthesis results show that area cost of new configura-

tion cache including cache control unit, added interconnects
and multiplexers has increased by 10.35% but the overall
area-overhead is only 2.16 %. Thus, the new configuration
cache structure can support dynamic context compression
with negligible overheads. In addition, the synthesis results
show that the critical path delay of the proposed architecture
is same as the base model i.e. 12.87 ns.
To demonstrate the effectiveness of the proposed approach,

we have applied several kernels in Figure 2 to the new and
base architectures. These kernels were executed with 100
iterations. Table 1 shows context compression ratio for the
evaluated kernels. Compression ratio means how many con-
text words can be compressed among entire context words.
The execution cycle count of each kernel on proposed archi-
tecture does not vary from the base architecture because the
functionality of proposed architecture is same as the base
model. All of the kernels show high compression ratio to be
more than 95 %. Furthermore, the comparison of power con-
sumption is shown in Table 1. Compared to the base archi-
tecture, it has shown to save up to 39.72% of the power.

Table 1. Power comparison
Configuration cache

Power (mW) Kernels CMP’
Ratio (%)

Base proposed

Reduced
(%)

First_Diff 100 471.47 288.12 38.89
Tri- Diagonal 100 519.22 313.00 39.72
State 100 501.47 309.11 38.36
Hydro 100 386.01 238.27 38.27
ICCG 100 573.16 350.01 38.93
Inner Product 100 364.50 224.56 38.39
24-Taps FIR 100 682.70 418.69 38.67
MVM 100 540.40 333.48 38.29
Mult in FFT 100 460.67 281.11 38.98
Comlex Mult 100 462.90 282.37 39.00
ITRANS 100 547.86 335.00 38.85
2D-FDCT 95.53 586.60 370.00 36.92
2D-IDCT 95.49 579.23 365.65 36.87
SAD 100 478.55 292.00 38.98
Quant 95.12 559.36 354.85 36.56
Dequant 95.23 561.41 355.10 36.75

CMP Ratio : compression ratio = (number of compressed context words/
number of entire context words)×100, Base: base architecture, Proposed:
proposed architecture, Reduced : {1-(Proposed/Base)}×100

14. Conclusion
Power consumption is very crucial for the coarse-grained

reconfigurable architecture for embedded systems and all
reconfigurable architectures have a configuration cache for
dynamic reconfiguration, which consumes significant
amount of power. In this paper, we introduced new context
architecture (dynamically compressible context architecture)
with its design flow and configuration cache structure to
support it. The proposed dynamically compressible context
architecture can save power in configuration cache without
performance degradation. Experimental results show that our
approach saves much power compared to conventional base
model with negligible area overhead. We have reduced the
power by up to 39.72% in configuration cache.

15. References
[1] Reiner Hartenstein, "A decade of reconfigurable computing: a
visionary retrospective," in Proc. of Design Automation and Test in
Europe Conf., pp. 642-649, Mar. 2001.
[2] Bingfeng Mei, Serge Vernalde, Diederik Verkest, and Rudy
Lauwereins, "Design methodology for a tightly coupled
VLIW/reconfigurable matrix architecture: a case study," in Proc. of
Design Automation and Test in Europe Conf., pp. 1224-1229, Mar.
2004.
[3] Nikhil Bansal, Sumit Gupta, Nikil D. Dutt, and Alex Nicolau,
"Analysis of the performance of coarse-grain reconfigurable archi-
tectures with different processing element configurations," in Proc.
of Workshop on Application Specific Processors, Dec. 2003.
[4] Andy Lambrechts, Praveen Raghavan, Murali Jayapala, "Energy-
Aware Interconnect-Exploration of coarse-grained re-configurable
processors," in Proc. of Workshop on Application Specific Proces-
sors, Sept. 2005.
[5] Minwook Ahn, Jonghee W. Yoon, Yunheung Paek, Yoonjin Kim,
Mary Kiemb, and Kiyoung Choi, "A spatial mapping algorithm for
heterogeneous coarse-grained reconfigurable architectures," in Proc.
of Design Automation and Test in Europe Conf., Mar. 2006.
[6] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J. Kurdahi,
Nader Bagherzadeh, and Eliseu M. Chaves Filho, "MorphoSys: an
integrated reconfigurable system for data-parallel and computation-
intensive applications," IEEE Trans. on Computers, vol. 49, no. 5, pp.
465-481, May 2000.
[7] Jurgen Becker and Martin Vorbach, "Architecture, memory and
interface technology integration of an indutrial/academic configur-
able system-on-chip (CSoC)," in Proc. of IEEE Computer Society
Annual Symp. on VLSI, 2003.
[8] Marco Lanuzza, Martin Margala, and Pasquale Corsonello,
"Cost-effective low-power processor-in-memory-based reconfigur-
able datapath for multimedia applications, " in Proc. of Int. Symp. on
Low Power Electronics and Design, pp. 161-166, Aug. 2005.
[9] Yoonjin Kim, Ilhyun Park, Kiyoung Choi and Yunheung Paek,
"Power-conscious configuration cache structure and code mapping
for coarse-grained reconfigurable architec-ture," in Proc. of Int.
Symp. on Low Power Electronics and Design, Oct. 2006.
[10] Synopsys Corp. : http://www.synopsys.com
[11]Taiwan Semiconductor Manufact’ Comp.: http://www.tsmc.com
[12] Model Technology Corp. : http://www.model.com
[13] http://www.netlib.org/benchmark/livermorec
[14] http://www.ert.rwth-achen.de/Projekte/Tools/DSPSTON
[15] http://students.cs.tamu.edu/ykim/research/iccd_2007.htm

400

