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Abstract source deadlock detection and (ii) a redu€tehnin(m,n))

This paper introduces a nove?(1) parallel deadlock overall run-timg complexity when implemented.in hard-
detection approach for multi-unit resource System-on-a- Waré, wherem is the number of processes andis the
Chips (SoCs), inspired by Kim’s methodd{1) detection numbgr of resources. Kim’s multi-unit resource dea_dlock
as well as Shiu’s method in parallel processing. Our con- detection algorithm has an overall run-time com_plexﬂy of
tributions are (i) the firstO(1) hardware deadlock detec- ©(m x n) [4]. Relationships between our algorithm and
tion and (ii) O(min(m,n)) preparation, both for multi- others are stated in detail in the following section.
unit resource systems, where and n are the number
of processes and resources, respectively(min(m,n)), 2 Related Work
previouslyO(m x n), is achieved by performing all the A set of processes is deadlocked if every process in the
searches for sink nodes for each and every resource in par-set is indefinitely waiting for certain resources that only
allel in hardware over a matrix representing resource al- other processes in the same set can release. There have
locations as well as other auxiliary matrices. Our experi- been a variety of deadlock detection algorithms proposed in
ments demonstrate that deadlock detection always takes twdhe past. A deadlock detection algorithm usually assumes
clock cycles. that its target system contains either only single-unit re-
. sources (single-unit resource systems) or single-uniteis w
1 Introduction as multi-unit resources (multi-unit resource systems).

Semiconductor technology till now has led to the dou-  For single-unit resource systems, Kim and Koh [5] de-
bling of transistor counts on a processor chip every 18 scribed an algorithm with a@®(1) deadlock detection run-
months [1]. This technology advance realizes the concepttime and an®(m + n) overall run-time complexity, where
of System-on-a-Chip (SoC) that can integrate several het-m and n are equal to the number of processes and re-
erogeneous processors and dozens of on-chip hardware resources in the system, respectively. Shiual. [9] pre-
sources on a single chip. To exploit parallelism in the mul- sented a parallel algorithm for single-unit resource syiste
tiprocessor hardware, such SoCs allow multiple jobs (pro- that uses an adjacency matrix representation and graph re-
cesses) to run concurrently on different processors. SoCduction. When implemented in hardware, its overall run-
often provide multiple units of the same type of resource so time complexity is onlyO(min(m,n)). For multi-unit re-
that more processors can be satisfied with their resource resource systems, Shoshaeati al. [10] introduced an algo-
quests even if the contention for that type of resource is rel rithm with anO(m? x n) run-time complexity, leveraging
atively high. While this particular approach can improve the a Resource Allocation Graph (RAG). Based on the same
throughput of such SoCs, it not only increases the probabil-RAG representation, Holt [3] devised a deadlock detection
ity of deadlocks but also makes harder to detect deadlocksalgorithm with a reduced(m x n) run-time complexity
These factors seemingly demand that future SoCs have fastor multi-unit resource systems. Leibfried [7] introduced
and deterministic deadlock detection service under a multi an adjacency matrix representation for resource allogatio
unit resource environment. and performed deadlock detection in the means of matrix

In this paper, we present a very fast parallel Multi-unit multiplication, which has ai®(m?) run-time complexity.
resource Deadlock Detection Algorithm (MDDA), inspired A decade ago, having extended his previous work [5], Kim
by Kim’'s work [4] as well as Shiu's work [9] and imple- presented an algorithm that detects deadloc®{n) run-
mented in hardware using Verilog. To enable parallel com- time for multi-unit resource systems [4], but its overath+u
putation in hardware and cope with multi-unit resource sys- time remainsD(m x n), which has not been improved since
tems, we extend the matrix representation for a ResourceHolt's work [3]. Compared with all previously published
Allocation Graph (RAG) from Shiu’s method [9] with sev- algorithms, our parallel deadlock detection algorithihis t
eral additional matrices. The contributions of this paper first that is applicable to multi-unit resource systems with
are (i) an improved and deterministi@(1) multi-unit re- only anO(min(m,n)) overall run-time complexity.
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Next, the details of our algorithm for multi-unit resource — freeunit vector
systems are presented with an example. (2 [1 ] . o]

. (a) ()
3.1 Assumptions

For our deadlock detection algorithm, we make the fol- ~ Figure 1. An example RAG adjacency matrix,
lowing assumptions: its weight matrix and free-unit vector.

1. The operating system grants resources immediatelyresource. Such a case is represented in the RAG by multi-
if the requested resource units are available, which ple edges each with an integer denoting the number of units
makes the entire systeexpedien{3]. assigned. We call this alternative representatiare@hted

2. A process requests one resource unit at a time. Thus, §AG To properly represent such a weighted RAG, in addi-

process is blocked as soon as it requests an unavailabldOn t0 the adjacency matrix, we use anotheby n matrix,

resource. As a result, a knot becomes a necessary andich We callRAG weight matriXy” or weight matrix in
sufficient condition for deadlock [3]. short. Each entry ofV stores the number of units of a re-

source that are assigned to each process. Furthermore, we
See next paragraph for the definition dfreot Note that deploy a row vector of size (called free-unit vectoy to

relaxing Assumption 2 is our future work. keep track of the numbers of available units of all resource
types. Figure 1(b) shows an example of a weight matrix and
3.2 Introduction of A Matrix Representa- its free-unit vector for a system with multi-unit resources
tion of A Weighted RAG In summary, a weight matrix for a weighted RAG F)

. . i = [wy <i<
Resource allocation among processes and resources ifo " be .deflned as followstV = [wi;lmn, (1 < @ <
m,1 < j <n), and where

a system can be represented by a Resource Allocation™
Graph (RAG). A RAG is defined as a graph, ) where

V is a set of nodes and E is a set of directed edflesan

be further partitioned into two disjoint subsets: the pssce A free-unit vector can be defined as follows:= [f;].,,

setP and the resource sé&. A RAG is abipartite graph in (1 < j <n),and where

these two sets. An edgg; = (p;,q;) is a request edge if

and only ifp; € P andg; € Q. An edgee;; = (g;,p:) is f; = kif k units of ¢; are free (i.e., available).

a grant edge if and only i, € @ andp; € P. A node is

a sink if and qnly if the node does not _have any outgoing 3.3 The Behind Theory

edge. A path is a sequence of alternating nodes and edges

(Pirs @51)y (@51sPin)r - Pigs @i )s - -+ (Gis s Pjsr ), WherE According to Assumption 2, for each process node in
each edge is distinct. If any nodes in a path are not distinct,the RAG, there can exist at most one outstanding request
it contains at least one cycle. A cycle does not contain anyedge. Therefore, each row in the adjacency matfixcan
sink. Thereachable sebf nodea is the set of nhodes such contain at most one value. If a process has no pending
that a path exists from to every node in theeachable set request, then its node in the RAG has no outgoing edges,
A knotis a nonempty sek” of nodes such that ttreachable and its corresponding row in the matrix has nwalues.
setof each node irK is exactlyK [3]. Such a process node is calledhk in graph theory [2, 3,

In [9], the authors represent a RAG using an adjacency4]. A sink node represents an active process because the
matrix. Each element of such a matrix represents either aprocess has acquired all the necessary resources to run. As
request edge (denoted by, grant edge (denoted k) or stated in Kim’s algorithm [4], if a resource is requested by
no edge (denoted k) in a RAG. Figure 1(a) shows an ex- asink process that is the only reachablek node for that
ample of the adjacency matrix of a system witlprocesses  resource node in the RAG, a deadlock occurs. Thus, it is
(p1,p2, .-, m) @ndn resourcesqi, g2, ---, Gn)- observed that as long as we have associated each resource

However, in a system with multi-unit resources, a pro- type with its propewink nodes, we can detect deadlock in
cess may request and thus is assigned with not only multi-O(1) time [4]. Note that a multiple unit resource can have
ple resources but also more than one unit of the same type ofmultiple sinks.

w;; = tif t units of ¢; are granted t@;.
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However, unlike Kim's algorithm, we compute the asso-

ciatedsink nodes for each and every resource type in paral- Table 1. Data structures for MDDA.

lel using the adjacency matrix. To computek nodes for | name [ notation| description |
each resource, all paths that start at the resource aretrack MGrant[ilj] P Whether any units of resourge
in parallel until the entire reachable set of this resou@e h iN MGruxn ‘ are granted to process
been discovered. Due to the fact that the RAG Isiar- MRequest]i][] mrij | whether any request for resourge
tite graph, process and resource nodes are alternated along_ " M fimxn from process is blocked
. . Weightsli][j] wj the number of units of resourge
any path. Thus, the overall cqmplexny of computing the in W, assigned to process
sink nodes for each resource is bounded by the length of FreeUnit[j] 7 the number of free units of
the longest path in the RAG, which@(min(m,n)) [6]. in F, resourcej
It is important to note that we use the adjacency matrix | SinkProcessi spi whether processis asink node
. . . inSP,, in the RAG
not the weight mgtrlx in the comp_utatlon_ efnk nodes,_ Sk iy whether processis a reachable
the reason of which can be explained with the following iNSK,,n sink node in the RAG
theorem: from resource
WorkProcessli][j] wp;j whether processis being visited
Theorem 3.1 An expedient general resource graph with N W Pryn in the current step during the searth
. . . . P for resourcg’s sink nodes
smgle—unlt requests is a deadlock state if and only if it-con WorkResourceflikl|_wrx | whether resourcé is being visited
tains a knot [3]. in W Ry xn ' in the current step during the seargh
for resourcej’s sink nodes
According to Theorem 3.1, if we find a knot in an ex- | PrevResource[j]k]| pr;x | whether resourck has been visited
pedient RAG with single-unit requests (Assumptions 1 and NP R in any previous steps during the
search for resourcgs sink nodes

2), the system is in a deadlock state. Also, by the defini-

tion of a knot [3], a knot is formed when an exclusive set edges and the other containing only request edges. In sum-

of nodes can only reach the nodes in the same set. Noténary, a grant adjacency matrix (MGrant[]) can be defined
here that this definition only considers whether a path exist a5 follows: MG = [MGis)mxn, (1 <i<m,1<j<n),

between two nodes, but does not count weights that are as-
signed to the edges along that path. Therefore, it is enough 1 if 3(qg;,pi) €E,

to consider only the adjacency matrix for deadlock detec- mgij = { '

tion, which contains all edges in the RAG.

On the contrary, the RAG weight matrix and the free-unit A request adjacency matrix (MRequest[]) can be defined
vector are utilized to track the status of resource allocati  as follows: M R = [m7;;]mxn, (1 <i<m,1<j <n),
inside the system. When a unit of any type of resource is
granted, the corresponding entry is increased in the RAG [ 1 if 3(pi,qs) €E,
weight matrix and decreased in the free-unit vector. On the i = { 0 otherwise.
other hand, when a unit of a resource type is released, the
corresponding entry is decreased in the RAG weight matrix A RAG weight matrix (Weights[]) and a free-unit vec-
and increased in the free-unit vector. The released resourctor (FreeUnit[]) have been defined in Section 3.2. FreeU-

0 otherwise.

unit becomes available for a future assignment. nit[] allows the algorithm to decide whether a request can
be granted or should be blocked.
3.4 Our Algorithm and Its Detail A sink process vector allows the algorithm to immedi-

ately know whether or not a reached process nodeiaja
Although our description is well self-contained, since node during the search feink nodes. A sink process vec-
our work extends both Kim'’s [4] and Shiu’s [9] work, the tor can be defined as follows$' P = [5Di]m, 0 < i < m),
readers are suggested to read their work to have some back-
ground if necessary. Before we present the parallel Multi- 1 if p;is sink,
unit resource Deadlock Detection Algorithm (MDDA), let 5Pi = { 0 otherwise.
us first introduce and explain some data structures used in
the algorithm as shown in Table 1. In this paper, matrix[], = The matrices mentioned so far maintain their states al-
matrix[i][] and matrix[][j] refer to as “all elements in the ways whereas the following four matrices are initialized ev
matrix,” “all elements of row in the matrix,” and “all ele-  ery timeStep 4of Algorithm 3.2 is entered.
ments of columry in the matrix,” respectively. A sink-1D matrix stores information about the reachable
For the sake of our parallel algorithm, an adjacency ma- sink nodes for each and every resource and is used to detect
trix for a RAG(V, E) is considered separately in two ma- deadlock in a constant run-time. A sink-1D matrix (Sink[])
trices without loss of generality: one containing only dran can be defined as followsSK = [sk;j]mxn, (1 < i <
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m,1 <j <n),

1 if p; is sink and can be reached from g,
Skij = .

0 otherwise.

We call the column vector, Sink[][j], thieitmaskfor the sink
nodes ofy;.

15 if (the bitmask op;) == Sink[][j] (i.e. the bitmask forg;’s sink nodes)
Il p; is the only sink node for q;

16 deadlock exists

17 else

18 no deadlock exists

19 go to Step 4

Step 4: Update sink bitmasks

WorkProcess[] and WorkResource[] are used to store the20 Vi=1,...,m, SinkProcess[i] =(V1<t<nM Request[i][t])

process and resource nodes visited during the intermediat
steps of computingiink bitmasks, respectively. A work
process matrix (WorkProcess[]) can be defined as follows:
WP = [wpijlmxn, (1 <i<m,1<j5<n),

1 if the latest process visited by
the search started from q; is p;,
0 otherwise.

Wpi; =

A work resource matrix (WorkResource[]) can be de-
fined as follows:WR = [wrjk]nxn, (1 < j < n,1 <
k<mn),

1 if the latest resource visited by
the search started from gq; is qu,

otherwise.

wrikr =

0

PrevResource][] is used to prevent the algorithm from

visiting the same resource node more than once, ensuring

O(min(m,n)). A matrix (PrevResource[]) for previously-
visited resource nodes can be defined as folloR®2 =
[prjk]ana (1 < .7 < n, 1 < k < n)u

0 if resource qx has been visited during
the search for q}s sink nodes,

otherwise.

Prik =
1

Lastly, we define thditmaskof p;, as anm-digit vector
[0...010...0]T where only the'” bit is one.

Algorithm 3.2 Parallel O(1) Multi-unit Resource Deadlock De-
tection Algorithm

Step 1: Resource request event(p;, q;)
whenp; makes a request for a unit gf, do
if FreeUnit[j] > 0
grant a unit ofg; to p;
MGrant[i]j =1 // no deadlock results
increase Weightsi][j] by one
decrease FreeUnit[j] by one
goto Step 4
else
MRequest[i][j] = 1
go to Step 3

/I deadlock may exist

P OoOoO~NOO~WNPRE

0

Step 2: Resource release event(p;, q;)
11 whenp; releases a unit of;, do

12 update MGrant[], MRequest[], Weights[] and FreeUnit[]
if any process (says) has been blocked fay;

13 Resource request evepi( ¢;)

14 else go to Step 4

Step 3: Detect Deadlock(p;, g;)

483

1 forall g; (=1....,n) //doin parallel
2 SinkQ[l = [0],mx1; WorkProcess(I[i = [0]mx1
23 if MGrant[][j] contains at least one non-zero element
24 V k=1,...,n, WorkResource[j][K] = 1 if k==]; O otherwise
25 Vk=1,..., n, PrevResourcelj][K] = 0 if k==j; 1 otherwise
26 while(1) // track g;'s sink id's
27 Vi=1,...,m, WorkProcessli][j]
= Vi<t<n(WorkResource[j][t] A M Grant[i][t])
28 Vi=1,...,m, Sinki[]
= (WorkProcess[i][j] A SinkProcess[i])
Vv Sink[i][7]
29 Vk=1,...,n, WorkResourcel[j][K]
= Vi<e<m (WorkProcess|c][j] N M Request[c|[k])
APrevResource[j][k]
30 Vk=1,...,n, PrevResource[j][k]
= ~WorkResource[j|[k] A PrevResourcelj][k]
31 if WorkResource[j][] contains all zeros
32 stop forg;

* Lines 27 to 30 are computed in sequence.

* ~, vV and A denote NOT, bit-wise OR and AND, respectively.

In the rest of this section, we illustrate the operation of
our algorithm with a system example consisting of five pro-
cessors and four multi-unit resources, as shown in Figure 2.
Note that one process is running on each processor. Fig-
ure 2(b) shows a current resource allocation status in a form
of weighted RAG. The corresponding adjacency matrix rep-
resentation of the status is shown in Table 2. Note that the
number of total units for each resource is specified in Fig-
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Figure 2. SoC Example

a)

We will show howsink node bitmasks are computed for
each resource iBtep 4 The resultingsink node bitmasks
will be saved in Sink[] and then used for future deadlock
detection inStep 3 Our algorithm stores all the reachable
sink nodes for resource nodein Sink[][j] (i.e., j*" col-
umn of Sink[]). Next time, when a request for resoujce
is blocked (line 9), the algorithm can immediately detect



operation in line 27 is equivalent to the following equation

(@)

Table 2. The Adjacency Matrix for 5 Pro-

cesses and 4 Resources Vi, j wpi; = Vicr<n (Wrje A mgis).

q1(USB) | g2(FW) | ¢3(ADC) | g4(EN) . .
| g r 0 0 The computations obp;; throughwp,,; are equivalent to
2| 9 0 9 0 finding all processes that hold some units of resograte-
if 3 8 ? 3 noted in WorkResource[j][] (i.e;*" row) and storing them
s r g 0 0 in WorkProcess[][j]. Now let us choose resourgeof Fig-

deadlock by comparing the requester process bitmask withure 2 as an example to discover ik nodes and take a
the savedsiink bitmask in Sink[][j] (line 15). closer look at how the matrices are computed. In the RAG
The following matrices show some data structures (i.e., of Figure 2(b), the units 0§, are assigned to three pro-

MGrant[], MRequest[], Weights[], FreeUnit[] and SinkPro- Cessesyfi, p» andps). At the same timeps's request foi;
cess[]) that were computed at the last invocation of the al- is blocked. Accordingly, MGrant[][1] i$11100]” (ones at
gorithm (the abbreviated notations in Table 1 are used): ~ the1**, 2"¢ and3"* elements which correspond gosalues

in the adjacency matrix), and MRequest[][1]@$001]7 (1

1 8 ? 8 8 (1] 8 8 at the5'” element which correspondsitovalue in the adja-
MGpn=|1 00 1| MRusn=|0 00 0 cency matrix). Before the first iteration, WorkResourcg[1]
010 0 0010 was initialized a$1000] (line 24). Thus, WorkProcess[][1]
0100 1000 is first computed and stored as the bitméski00]7 (line
27) sincepy, po andps are directly connected fromp,. In
? 8 (1) 8 Fu=[0 0 0 0] the same way, for the rest of resources, their correspond-
Wosn= |10 0 1 " ing columns in WorkProcess[] (WorkProcess[][2] through
8 1 8 8 SPm=[0 110 0] WorkProcess[][n]) are computed. The following values of

WorkProcess|] result:
MG, xn Stores the same grant edges from resources to

1000
processes as in Table 24 R, «,, Stores the same request 1010
edges from processes to resources as in Tabl&/2,., WPmxn=|1 0 0 1
stores the numbers of units of each resource assigned to 8 } 8 8

each process,, shows that all units of every resource have
been granted; thus, there exists no available resourcg unit
in the current system.SP,, indicates that in the current
RAG, processes, andps aresink nodes. Note tha§ P,,, is
computed fromM R, x, using the following equation (line
20):

Then, if any process marked in WorkProcess[][j] is a
sink node, it is inserted into Sink[][j] (line 28). The op-
eration in line 28 is equivalent to the following equation:

3)

@) For the case of;, the algorithm checks whether anyone
Right before the iteration, several data structures (i.e.,is a sink node among the three process nodes (-
Sink[], WorkProcess[], WorkResource[] and PrevRe- andp;) by comparing WorkProcess[][1]1(1100]7) with
sourcel]) are initialized in lines 22-25. That is, in our exa SinkProcess([(1100]7) (line 28). As a resultp, andps
ple all elements in Sink[] and WorkProcess[] are initiaize  are identified as newly founsink nodes for resource; .
to zeros (SK, WP 0],,x»,). WorkResource[] and PrevRe-  Thus, they are saved in Sink[][1] (th&"? and 3" ele-
sorucef[] are initialized as follows: ments of thel*! column become ones). Similarly, the rest
i of Sink[] (Sink[][2] through Sink[][n]) are computed for re
1 source2 through resource. The following values of Sink(]
1 result:
0

Vi,j Sk‘U = (’LUpj,j A\ Spi) V Sk‘ij.
Vi sp; = N(\/lgtgnmﬁt).

1
1

(=N
(= )
o O O

WRan: PRan =

(

=)

0 01
0 10
1 11
0 11

o
o
—
=

The current bit patterns d/ R and PR imply that the
search starts from each resource (and visited each resource
itself). Now the journey to search faiink nodes begins.

The algorithm goes into the iterations of a loop of comput-
ing sink node bitmasks and collects them in Sink]].

SKan =

- = o
cooo
o~ o
o~ oo

[en R en)
o o
o O

(

o
o

Next, the algorithm computes WorkResource[] from

First, the algorithm computes WorkProcess]] (i.e., cur-
rently visiting processes) from WorkResource][] (i.e., mos
recently visited resources) using MGrant[] (line 27). The
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WorkProcess[] (just computed), MRequest[] and PrevRe-
source[]. Doing that, the algorithm finds a set of resource
nodes that are directly connected from processes notated



in WorkProcess|[][j] for each resourgeand stores them in After the computations from line 27 through line 30
WorkResource[j][] (line 29). This operation is equivalent are finished, the algorithm looks at each row of WorkRe-
to traveling one step farther from the originated resource source[] (corresponding to each resource) to decide whethe

node to another resource node via a process blocked for thét can stop the search fatink nodes for the resource (line
second resource node. The operation in line 29 can be ex31-32). If WorkResource[j][] contains all zerag;,’s search

pressed by the following equation:
4)

To illustrate the computation of WorkResource][], let us-con
tinue with the example fay; . WorkProcess[][1][11100]7)
indicates thay; now reaches three process nodes -
andps). From these three process nodegshas one out-
going edge (a request edge)¢q p2 andps have no out-
going edges since they asénk nodes. Thus, algorithm
computes WorkResource[1][] #100] (line 29), indicating
thatq; can further reach resource noggevia p; sincep;

is blocked forg,. In the same way, the rest of WorkRe-
source[] (WorkResource[2][] through WorkResource[n][])
are computed for resour@through resource. The fol-
lowing values of WorkResource[] result:

Vi, k wrjp = Vice<m(Wpe; Amreg) A prig.

(=i
o o

WRnxn =

OO = O
o o
SO =O
[l en)

This W R implies the following as can be seen from Fig-
ure 2(b):q; can reachy, viap;. g2 can reachy; andgs via
ps andpy, respectively.qs andg, have no paths to reach
other resources.

After WorkResource[] is computed, the algorithm up-

for its sink nodes has visited all resource nodesgjis
reachable set. Therefore, Sink]][j] contains a complete bi
mask forg;’s reachablesink nodes. Thusg;’s search can
be stopped after the current iteration. Note that seardres f
different resource nodes may stop at different iteratiéss.
in this example, after the first iteration is finishedSiep
4, for ¢3 and gy, their corresponding rows in matri¥’ R
(the 37¢ and4'" rows) contain all zero values. This means
the current values fag; andg, in matrix SK (the 3¢ and
4th columns) contain their completénk node bitmasks.
This informs thatgs andg, have theirsink node bitmasks
equal tops andps, respectively. Thus, fogz andgy, there
is no need to perform the search further. Eprhowever,
the 15 row ([0100]) of matrix W R contains one element
whose value is 1 (thg"¢ element in the row), meaning that
some of the three processegs, p» andps (which are stored
as bitmasK11100]7 in WorkProcess[][1]), are blocked for
resourcey,. Similarly for g2, the 2™¢ row ([1010]) of ma-
trix W R indicates that either or both of the two processes,
ps andps ([00011]7 as notated in WorkProcessl[][2]), are
blocked for resourceg, andgs. Thus, forg; andg., fur-
ther iterations must be performed to track and reach more
sinks.

In the second iteration, all contents corresponding;to
and ¢, are computed in the same way as in the first iter-

dates PrevResource[] to include any resource node that i€tion Whereas contents correspondinggandg, remain

marked as 1 (i.e., just visited) in WorkResource[] (line.30
The operation in line 30 can be expressed by the following
equation:

®)

Continue with the example of,. PrevResource[1][] was
initialized as[0111] (line 25). Currently, the values of
WorkResource[1][] ar¢0100], meaning the search fgi's
sink nodes is now visitingi,. Thus, the updated PrevRe-
source[1][] is computed d9011] (line 30), which signifies
bothg; andgs have now been visited (0 indicates “visited”).
This mechanism effectively prevents our algorithm from be-

Vi, k prijp = ~wrji A prii.

ing trapped in cycles. The rest of PrevResource[] (PrevRe-

source[2][] through PrevResource[n][]) are computed for
resource2 through resource: in the same way. The fol-

lowing values of PrevResource[] result:
01

PRI’IXU =

_ =

0
1

= =0 O

0
1
1

o
o

This matrix implies that starting fron,, the path has cur-
rently reacheds; from g, reachingg; as well asys.
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) unchanged. The following results after the second itematio

0100 00 0 0
010 0 1 110
WPosn=]0 10 0|SKmxn=|1 10 1
1 000 00 00
1 000 00 0 0
00 10 0001
000 0 0001
WRan =1 g g o PRon=| 1 | ¢ 1
000 0 1110

Now for g», the2™? row of W R also contains all zeros. It
means thags’s column inSK (the2"¢ column) contains its
completesink bitmask. Forg;, however, its corresponding
row of matrix W R (the 15¢ row) still contains an element
whose value is 1. Thus, further iterations must be performed
to track moresinks. After another iteration of computation
is performed fory, , the following results:

[«

0
1
0
0
0

[==]

Wmen = SKmxn =

o O
OO == O
SO == O
S O =



¢ * *
b0 oot vty Py [y et Pt P
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0000 1110 hd * ?
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Now for ¢, its row (the1*¢ row) of W R also contains : Py : Py : s
all zeros. It means that its column ¥ (the 15¢ column) ¢ * *
contains its completeink bitmask. From matrixS K, we Malld o | |Mali g | Ml g SKIWR || SKIWR - SKIA
can see thaj; andg, are bonded to tweink nodesp, and : : : : : :
ps3, While g3 andq, are bonded to their singkénk nodesp, * ? * sids
andps, respectively. Note that the search for each resource aTTe [RPRe || e TR s
node’ssinks only visits the resource nodes in its reachable cell
set once. This guarantees that the complexity of updating b ¢ *
all sink bitmasks is bounded b§ (min(m,n)). e RPRe R |
Let us now suppose that from the current state of Fig- e
ure 2(b),p» makes a request fg, and nothing else changes ? * ?
in the system. Does this request cause deadlock? Since aite Merte |

g4 has only one unit being used by, this request is sus-

pended. Thusp, mL_Jst wa_it_fo_rq4 to bgcome _free. Then, Figure 3. Architecture of 3x3 MDDU.
the deadlock detection unit is invoked immediatSyep 3. ] . .
As indicated in our algorithm, we simply compagg’s (two slices form one Configurable Logic Block (CLB)). In

sink bitmask Sink[J[4] (00100)7) with the bitmask of total, 650 four-input Look-Up Tables (LUTs) were utilized.

p2 ((01000]7). Since they are different, we can conclude The total equivalent gate count for our design is 8949.

that this request does not cause deadlock in the system. Ac-

cordingly, all sink bitmasks for all resource nodes are up- 4 EXperiment and Discussion

dated inStep 4 After the updating, all resource nodes are

bonded to one singleink nodeps. 4.1 Target System and Simulation Envi-
Furthermore, aftep, is blocked forg,, let us assumes ronment

makes a request for a unit @§. Does this request cause

deadlock? ps is blocked for this request becauge has

two units being used by, andps. By comparingg.’s

sink node bitmask Sink[][2][00100]7) with the bitmask of

p3 ([00100]T), the algorithm immediately determines that

the request causes deadlock.

Here we describe a sample target Multiprocessor
System-on-a-Chip (MPSoC) integrating our 5x4 MDDU.
The architecture of the target SoC is similar to Figure 2(a).

It consists of five Motorola MPC755 processors, SRAM
memory of 256MB and four multi-unit dummy resources.
These dummy resources count the specified time (set by
3.5 Architecture the software) after their units are granted and interrugt th
corresponding processor where a process uses the resource

In this section, we delineate how Algorithm 3.2 is re- units when a preset time elapses. Thus, it is sufficient to
alized in hardware. The simplified view of the architec- use these dummy devices to simulate various deadlock sce-
ture of a Multi-unit resource hardware Deadlock Detection narios in the system. All components except processors
Unit (MDDU) for 3 processes and 3 resources is shown in and SRAMs are implemented in Verilog HDL. The appli-
Figure 3. We show 3x3 MDDU instead of 5x4, which might cation is written in the C language and compiled using
look too messy given the space of the paper. The architec-a PowerPC-GCC cross-compiler. We use Atalanta RTOS
ture implements all data structures in Table 1. In Figure 3, version 0.3 [11], a shared memory multiprocessor RTOS,
eachMatrix cell contains three elements one each from to manage processes and resources. In order to simulate
MGrant[], MRequest[] and Weights[]. EacBK/WP cell such an MPSoC with the multiprocessor operating system,
contains two elements one each from Sink[] and WorkPro- we use Mentor Graphics Seamless hardware-software Co-
cess[]. EachWR/PR cellcontains two elements one each Verification Environment [8] aided by ModelSim for hard-
from WorkResource[] and PrevResource[]. The computa- ware simulation and XRAY for software debugging.
tions inStep 4of Algorithm 3.2 are performed by acting on
the data structures maintained within the various cels,(i.
Matrix cells, SK/WP cells and WR/PR cglls We test the 5x4 MDDU with an application consisting of

We used the Xilinx ISE 9.1i to synthesize 5x5 MDDU five processes each running on a processor of the aforemen-
on Virtex-1l XC2V250 device. MDDU utilizes 757 slices tioned target. Due to space limit, we are unable to describe

4.2 Application Scenario
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the scenario in detail, which has been embedded in Sec-

tion 3.4. Instead, we provide a technical report [12] for the

complete explanation of the application.

4.3 Experimental Results

We simulated a series of events including both grants
and requests, which incrementally builds up the resource

allocation situation shown in Figure 2(b). Throughout our

simulation, deadlock detection always takes only two clock
cycles for all events. To demonstrate the reduced detection
preparation time, we count the number of clock cycles be-
tween the moment the detection preparation is triggered and

the moment all¥’ R elements become zeros in ModelSim’s

wave window. The events and their corresponding detec-

Table 4. The Comparison between Our Algo-
rithm and Shiu’s Algorithm [9]

the algorithm

condition for deadlock.

Feature Ours Shiu’s
Applicable Both multi-unit as well as Only single-unit
systems single-unit resource systems. resource systems.
A resource node can A resource node can
Characteristics have multiple outgoing have at most one
of the RAG edges (grants) and outgoing edge (grant)
multiple incoming and multiple incoming
edges (requests). edges (requests).
The theory Aknotis a Acycleis a
behind necessary and sufficient | necessary and sufficiel

condition for deadlock.

Key technique
of
the algorithm

Parallel graph traverse
in search for
sink process nodes.

Parallel graph reductio
to remove terminal
edges iteratively.

Detection complexity|

oQ)

O(min(m,n))

Overall complexity

O(min(m,n))

O(min(m,n))

tion preparation times are listed in Table 3. Note that all O(min(m,n)). For current and future SoCs, our MDDU
grants and requests are made for one unit per event accordsrovides very fast and deterministic run-time detection of
ing to Assumption 2. As shown in the table, MDDU takes deadlocks for both multi-unit as well as single-unit reseur

15 clock cycles to compute th@nk bitmasks for all re-
sources in the RAG shown in Figure 2(b) at time. That
is equivalent to three iterations of thehile loop in Step

4. In our simulated target, the maximum number of itera-

tions inStep 4can be four at most because of the aforestated

O(min(m,n)) run-time complexity wheren = 5 andn =
4. Finally at timet,3, deadlock is detected in the system.

Table 3. Simulated Events and Their Detec-
tion Preparation Clock Cycles on 5x4 Multi-
unit Resource MPSoC

Time Events Prepara|| Time Events Prepara

-tion -tion

tq ¢ is granted tg, 5 ts q1 is granted tgo 10

to qs is granted tQo 5 tg q1 is granted tgs 10

ts q4 is granted ts 5 t1o P4 requestsys 15

ty q2 is granted tgs 5 t11 ps requestsy; 15

ts q2 is granted tgy 5 t1o pa requestsyy 15

to p1 requestsy, 10 t13 ps requestsy N/A

ty ¢ is granted tg, 10

4.4 Discussion

(1]
(2]
(3]
(4]

(5]

(6]

(7]

As both of ours and Shiu’s algorithms have the same [g]
O(min(m,n)) overall run-time complexity, let us compare

various aspects of our algorithm with those of Shiu’s
gorithm, and highlight their difference and our novelty.

summary of the comparison is shown in Table 4. As can be
seen in the table, other than the same overall run-time com-

al-
A

plexity and the single-request assumption for proceskes, t

two algorithms are different in all aspects.

5 Conclusion

An O(1) parallel multi-unit resource deadlock detec-

tion algorithm is presented in this paper. The described

algorithm has a run-time complexity ¢¥(1) for detecting

deadlock an@(min(m,n)) for preparing detection. Com-

pared with Kim’s algorithm [4], deadlock preparation ru
time complexity is significantly reduced fro@(m x n) to

n_
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9]

[11]

12]

systems.
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