
A Novel O(1) Parallel Deadlock Detection Algorithm and Architecture for
Multi-unit Resource Systems

Xiang Xiao and Jaehwan John Lee
ECE Department, Purdue School of Engineering and Technology

Indiana University-Purdue University Indianapolis, USA
{xxiao, johnlee}@iupui.edu

Abstract
This paper introduces a novelO(1) parallel deadlock

detection approach for multi-unit resource System-on-a-
Chips (SoCs), inspired by Kim’s method inO(1) detection
as well as Shiu’s method in parallel processing. Our con-
tributions are (i) the firstO(1) hardware deadlock detec-
tion and (ii) O(min(m,n)) preparation, both for multi-
unit resource systems, wherem and n are the number
of processes and resources, respectively.O(min(m,n)),
previouslyO(m × n), is achieved by performing all the
searches for sink nodes for each and every resource in par-
allel in hardware over a matrix representing resource al-
locations as well as other auxiliary matrices. Our experi-
ments demonstrate that deadlock detection always takes two
clock cycles.

1 Introduction
Semiconductor technology till now has led to the dou-

bling of transistor counts on a processor chip every 18
months [1]. This technology advance realizes the concept
of System-on-a-Chip (SoC) that can integrate several het-
erogeneous processors and dozens of on-chip hardware re-
sources on a single chip. To exploit parallelism in the mul-
tiprocessor hardware, such SoCs allow multiple jobs (pro-
cesses) to run concurrently on different processors. SoCs
often provide multiple units of the same type of resource so
that more processors can be satisfied with their resource re-
quests even if the contention for that type of resource is rel-
atively high. While this particular approach can improve the
throughput of such SoCs, it not only increases the probabil-
ity of deadlocks but also makes harder to detect deadlocks.
These factors seemingly demand that future SoCs have fast
and deterministic deadlock detection service under a multi-
unit resource environment.

In this paper, we present a very fast parallel Multi-unit
resource Deadlock Detection Algorithm (MDDA), inspired
by Kim’s work [4] as well as Shiu’s work [9] and imple-
mented in hardware using Verilog. To enable parallel com-
putation in hardware and cope with multi-unit resource sys-
tems, we extend the matrix representation for a Resource
Allocation Graph (RAG) from Shiu’s method [9] with sev-
eral additional matrices. The contributions of this paper
are (i) an improved and deterministicO(1) multi-unit re-

source deadlock detection and (ii) a reducedO(min(m,n))
overall run-time complexity when implemented in hard-
ware, wherem is the number of processes andn is the
number of resources. Kim’s multi-unit resource deadlock
detection algorithm has an overall run-time complexity of
O(m × n) [4]. Relationships between our algorithm and
others are stated in detail in the following section.

2 Related Work
A set of processes is deadlocked if every process in the

set is indefinitely waiting for certain resources that only
other processes in the same set can release. There have
been a variety of deadlock detection algorithms proposed in
the past. A deadlock detection algorithm usually assumes
that its target system contains either only single-unit re-
sources (single-unit resource systems) or single-unit as well
as multi-unit resources (multi-unit resource systems).

For single-unit resource systems, Kim and Koh [5] de-
scribed an algorithm with anO(1) deadlock detection run-
time and anO(m + n) overall run-time complexity, where
m and n are equal to the number of processes and re-
sources in the system, respectively. Shiuet al. [9] pre-
sented a parallel algorithm for single-unit resource systems
that uses an adjacency matrix representation and graph re-
duction. When implemented in hardware, its overall run-
time complexity is onlyO(min(m,n)). For multi-unit re-
source systems, Shoshaniet al. [10] introduced an algo-
rithm with anO(m2 × n) run-time complexity, leveraging
a Resource Allocation Graph (RAG). Based on the same
RAG representation, Holt [3] devised a deadlock detection
algorithm with a reducedO(m × n) run-time complexity
for multi-unit resource systems. Leibfried [7] introduced
an adjacency matrix representation for resource allocations
and performed deadlock detection in the means of matrix
multiplication, which has anO(m3) run-time complexity.
A decade ago, having extended his previous work [5], Kim
presented an algorithm that detects deadlock inO(1) run-
time for multi-unit resource systems [4], but its overall run-
time remainsO(m×n), which has not been improved since
Holt’s work [3]. Compared with all previously published
algorithms, our parallel deadlock detection algorithm is the
first that is applicable to multi-unit resource systems with
only anO(min(m,n)) overall run-time complexity.

1-4244-1258-7/07/$25.00 ©2007 IEEE 480

3 A New O(1) Deadlock Detection Methodol-
ogy for Multi-unit Resource Systems

In this section, we first present some assumptions for our
target system. Then, we describe a matrix representation
[9] of a RAG, on which our hardware algorithm is based.
Next, the details of our algorithm for multi-unit resource
systems are presented with an example.

3.1 Assumptions

For our deadlock detection algorithm, we make the fol-
lowing assumptions:

1. The operating system grants resources immediately
if the requested resource units are available, which
makes the entire systemexpedient[3].

2. A process requests one resource unit at a time. Thus, a
process is blocked as soon as it requests an unavailable
resource. As a result, a knot becomes a necessary and
sufficient condition for deadlock [3].

See next paragraph for the definition of aknot. Note that
relaxing Assumption 2 is our future work.

3.2 Introduction of A Matrix Representa-
tion of A Weighted RAG

Resource allocation among processes and resources in
a system can be represented by a Resource Allocation
Graph (RAG). A RAG is defined as a graph (V,E) where
V is a set of nodes and E is a set of directed edges.V can
be further partitioned into two disjoint subsets: the process
setP and the resource setQ. A RAG is abipartitegraph in
these two sets. An edgeeij = (pi, qj) is a request edge if
and only ifpi ∈ P andqj ∈ Q. An edgeeji = (qj , pi) is
a grant edge if and only ifqj ∈ Q andpi ∈ P . A node is
a sink if and only if the node does not have any outgoing
edge. A path is a sequence of alternating nodes and edges
(pi1 , qj1), (qj1 , pi2), . . ., (pik

, qjk
), . . ., (qis

, pjs+1), where
each edge is distinct. If any nodes in a path are not distinct,
it contains at least one cycle. A cycle does not contain any
sink. Thereachable setof nodea is the set of nodes such
that a path exists froma to every node in thereachable set.
A knotis a nonempty setK of nodes such that thereachable
setof each node inK is exactlyK [3].

In [9], the authors represent a RAG using an adjacency
matrix. Each element of such a matrix represents either a
request edge (denoted byr), grant edge (denoted byg) or
no edge (denoted by0) in a RAG. Figure 1(a) shows an ex-
ample of the adjacency matrix of a system withm processes
(p1, p2, ..., pm) andn resources(q1, q2, ..., qn).

However, in a system with multi-unit resources, a pro-
cess may request and thus is assigned with not only multi-
ple resources but also more than one unit of the same type of

q
1

q
2 n

q

.

.

.
.

.

.
.

.

.
.

.

.

q
1

q
2 n

q

.

.

.
.

.

.
.

.

.
.

.

.

p

p

p
1

2

3 0

. . .

. . .

. . .

0

. . .

p
m 0 . . . 0

.
 .
 .

0

g g

g

r

g

r

g

adjacency matrix

(b)(a)

p

p

p
1

2

3 0

. . .

. . .

. . .

0

. . .

p
m 0 . . . 0

.
 .
 .

1 0

2 0

0 3

. . . 0

weight matrix
1

2

1

 − unit vectorfree
2

Figure 1. An example RAG adjacency matrix,
its weight matrix and free-unit vector.

resource. Such a case is represented in the RAG by multi-
ple edges each with an integer denoting the number of units
assigned. We call this alternative representation aweighted
RAG. To properly represent such a weighted RAG, in addi-
tion to the adjacency matrix, we use anotherm by n matrix,
which we callRAG weight matrixW or weight matrix in
short. Each entry ofW stores the number of units of a re-
source that are assigned to each process. Furthermore, we
deploy a row vector of sizen (called free-unit vector) to
keep track of the numbers of available units of all resource
types. Figure 1(b) shows an example of a weight matrix and
its free-unit vector for a system with multi-unit resources.

In summary, a weight matrix for a weighted RAG(V,E)
can be defined as follows:W = [wij]m×n, (1 ≤ i ≤
m, 1 ≤ j ≤ n), and where

wij = t if t units of qj are granted topi.

A free-unit vector can be defined as follows:F = [fj]n,
(1 ≤ j ≤ n), and where

fj = k if k units of qj are free (i.e., available).

3.3 The Behind Theory

According to Assumption 2, for each process node in
the RAG, there can exist at most one outstanding request
edge. Therefore, each row in the adjacency matrixM can
contain at most oner value. If a process has no pending
request, then its node in the RAG has no outgoing edges,
and its corresponding row in the matrix has nor values.
Such a process node is calledsink in graph theory [2, 3,
4]. A sink node represents an active process because the
process has acquired all the necessary resources to run. As
stated in Kim’s algorithm [4], if a resource is requested by
asink process that is the only reachablesink node for that
resource node in the RAG, a deadlock occurs. Thus, it is
observed that as long as we have associated each resource
type with its propersink nodes, we can detect deadlock in
O(1) time [4]. Note that a multiple unit resource can have
multiplesinks.

481

However, unlike Kim’s algorithm, we compute the asso-
ciatedsink nodes for each and every resource type in paral-
lel using the adjacency matrix. To computesink nodes for
each resource, all paths that start at the resource are tracked
in parallel until the entire reachable set of this resource has
been discovered. Due to the fact that the RAG is abipar-
tite graph, process and resource nodes are alternated along
any path. Thus, the overall complexity of computing the
sink nodes for each resource is bounded by the length of
the longest path in the RAG, which isO(min(m,n)) [6].

It is important to note that we use the adjacency matrix
not the weight matrix in the computation ofsink nodes,
the reason of which can be explained with the following
theorem:

Theorem 3.1 An expedient general resource graph with
single-unit requests is a deadlock state if and only if it con-
tains a knot [3].

According to Theorem 3.1, if we find a knot in an ex-
pedient RAG with single-unit requests (Assumptions 1 and
2), the system is in a deadlock state. Also, by the defini-
tion of a knot [3], a knot is formed when an exclusive set
of nodes can only reach the nodes in the same set. Note
here that this definition only considers whether a path exists
between two nodes, but does not count weights that are as-
signed to the edges along that path. Therefore, it is enough
to consider only the adjacency matrix for deadlock detec-
tion, which contains all edges in the RAG.

On the contrary, the RAG weight matrix and the free-unit
vector are utilized to track the status of resource allocation
inside the system. When a unit of any type of resource is
granted, the corresponding entry is increased in the RAG
weight matrix and decreased in the free-unit vector. On the
other hand, when a unit of a resource type is released, the
corresponding entry is decreased in the RAG weight matrix
and increased in the free-unit vector. The released resource
unit becomes available for a future assignment.

3.4 Our Algorithm and Its Detail

Although our description is well self-contained, since
our work extends both Kim’s [4] and Shiu’s [9] work, the
readers are suggested to read their work to have some back-
ground if necessary. Before we present the parallel Multi-
unit resource Deadlock Detection Algorithm (MDDA), let
us first introduce and explain some data structures used in
the algorithm as shown in Table 1. In this paper, matrix[],
matrix[i][] and matrix[][j] refer to as “all elements in the
matrix,” “all elements of rowi in the matrix,” and “all ele-
ments of columnj in the matrix,” respectively.

For the sake of our parallel algorithm, an adjacency ma-
trix for a RAG(V,E) is considered separately in two ma-
trices without loss of generality: one containing only grant

Table 1. Data structures for MDDA.

name notation description

MGrant[i][j] mgij whether any units of resourcej
in MGm×n are granted to processi

MRequest[i][j] mrij whether any request for resourcej

in MRm×n from processi is blocked
Weights[i][j] wij the number of units of resourcej

in Wm×n assigned to processi
FreeUnit[j] fj the number of free units of

in Fn resourcej
SinkProcess[i] spi whether processi is asink node

in SPm in the RAG
Sink[i][j] skij whether processi is a reachable

in SKm×n sink node in the RAG
from resourcej

WorkProcess[i][j] wpij whether processi is being visited
in WPm×n in the current step during the search

for resourcej’s sink nodes
WorkResource[j][k] wrjk whether resourcek is being visited

in WRn×n in the current step during the search
for resourcej’s sink nodes

PrevResource[j][k] prjk whether resourcek has been visited
in PRn×n in any previous steps during the

search for resourcej’s sink nodes

edges and the other containing only request edges. In sum-
mary, a grant adjacency matrix (MGrant[]) can be defined
as follows:MG = [mgij]m×n, (1 ≤ i ≤ m, 1 ≤ j ≤ n),

mgij =
{

1 if ∃(qj , pi) ∈E,

0 otherwise.

A request adjacency matrix (MRequest[]) can be defined
as follows:MR = [mrij]m×n, (1 ≤ i ≤ m, 1 ≤ j ≤ n),

mrij =
{

1 if ∃(pi, qj) ∈E,

0 otherwise.

A RAG weight matrix (Weights[]) and a free-unit vec-
tor (FreeUnit[]) have been defined in Section 3.2. FreeU-
nit[] allows the algorithm to decide whether a request can
be granted or should be blocked.

A sink process vector allows the algorithm to immedi-
ately know whether or not a reached process node is asink

node during the search forsink nodes. A sink process vec-
tor can be defined as follows:SP = [spi]m, (1 ≤ i ≤ m),

spi =
{

1 if pi is sink,

0 otherwise.

The matrices mentioned so far maintain their states al-
ways whereas the following four matrices are initialized ev-
ery timeStep 4of Algorithm 3.2 is entered.

A sink-ID matrix stores information about the reachable
sink nodes for each and every resource and is used to detect
deadlock in a constant run-time. A sink-ID matrix (Sink[])
can be defined as follows:SK = [skij]m×n, (1 ≤ i ≤

482

m, 1 ≤ j ≤ n),

skij =
{

1 if pi is sink and can be reached from qj ,

0 otherwise.

We call the column vector, Sink[][j], thebitmaskfor the sink
nodes ofqj .

WorkProcess[] and WorkResource[] are used to store the
process and resource nodes visited during the intermediate
steps of computingsink bitmasks, respectively. A work
process matrix (WorkProcess[]) can be defined as follows:
WP = [wpij]m×n, (1 ≤ i ≤ m, 1 ≤ j ≤ n),

wpij =






1 if the latest process visited by

the search started from qj is pi,

0 otherwise.

A work resource matrix (WorkResource[]) can be de-
fined as follows:WR = [wrjk]n×n, (1 ≤ j ≤ n, 1 ≤
k ≤ n),

wrjk =






1 if the latest resource visited by

the search started from qj is qk,

0 otherwise.

PrevResource[] is used to prevent the algorithm from
visiting the same resource node more than once, ensuring
O(min(m,n)). A matrix (PrevResource[]) for previously-
visited resource nodes can be defined as follows:PR =
[prjk]n×n, (1 ≤ j ≤ n, 1 ≤ k ≤ n),

prjk =






0 if resource qk has been visited during

the search for q′js sink nodes,

1 otherwise.

Lastly, we define thebitmaskof pi as anm-digit vector
[0. . .010. . .0]T where only theith bit is one.

Algorithm 3.2 Parallel O(1) Multi-unit Resource Deadlock De-
tection Algorithm

Step 1: Resource request event(pi, qj)
1 whenpi makes a request for a unit ofqj , do
2 if FreeUnit[j] > 0
3 grant a unit ofqj to pi

4 MGrant[i][j] = 1 // no deadlock results
5 increase Weights[i][j] by one
6 decrease FreeUnit[j] by one
7 go to Step 4
8 else
9 MRequest[i][j] = 1 // deadlock may exist
10 go to Step 3

Step 2: Resource release event(pi, qj)
11 whenpi releases a unit ofqj , do
12 update MGrant[], MRequest[], Weights[] and FreeUnit[]

if any process (sayps) has been blocked forqj

13 Resource request event(ps, qj)
14 else go to Step 4

Step 3: Detect Deadlock(pi, qj)

15 if (the bitmask ofpi) == Sink[][j] (i.e. the bitmask forqj ’s sink nodes)
// pi is the only sink node for qj

16 deadlock exists
17 else
18 no deadlock exists
19 go to Step 4

Step 4: Update sink bitmasks
20 ∀ i = 1,. . . ,m, SinkProcess[i] =∼(∨1≤t≤nMRequest[i][t])
21 for all qj (j=1,. . . ,n) // do in parallel
22 Sink[][j] = [0]m×1; WorkProcess[][j] = [0]m×1

23 if MGrant[][j] contains at least one non-zero element
24 ∀ k = 1,. . . ,n, WorkResource[j][k] = 1 if k==j; 0 otherwise
25 ∀ k = 1,. . . ,n, PrevResource[j][k] = 0 if k==j; 1 otherwise
26 while(1) // track qj ’s sink id’s
27 ∀ i = 1,. . . ,m, WorkProcess[i][j]

= ∨1≤t≤n(WorkResource[j][t] ∧ MGrant[i][t])
28 ∀ i = 1,. . . ,m, Sink[i][j]

= (WorkProcess[i][j] ∧ SinkProcess[i])
∨Sink[i][j]

29 ∀ k = 1,. . . ,n, WorkResource[j][k]
= ∨1≤c≤m(WorkProcess[c][j] ∧ MRequest[c][k])
∧PrevResource[j][k]

30 ∀ k = 1,. . . ,n, PrevResource[j][k]
= ∼WorkResource[j][k] ∧ PrevResource[j][k]

31 if WorkResource[j][] contains all zeros
32 stop forqj

* Lines 27 to 30 are computed in sequence.
* ∼, ∨ and ∧ denote NOT, bit-wise OR and AND, respectively.

In the rest of this section, we illustrate the operation of
our algorithm with a system example consisting of five pro-
cessors and four multi-unit resources, as shown in Figure 2.
Note that one process is running on each processor. Fig-
ure 2(b) shows a current resource allocation status in a form
of weighted RAG. The corresponding adjacency matrix rep-
resentation of the status is shown in Table 2. Note that the
number of total units for each resource is specified in Fig-
ure 2(a).

EN
(1 unit)

ADC
(1 unit)

(2 units)
FW

(4 units)
USB

p1 p2 p3 p4
p5

q q q2 3 4q1
(EN)(USB) (FW) (ADC)

2 1 1 1 1 1 1

EN = Ethernet interface

FW = FireWire interface
* USB = Universal Serial Bus

ADC = Analog−to−Digital Converter

(b)

MPE−1

MPE−2

MPE−3

MPE−4

MPE−5

B
 U

 S

(a)

Figure 2. SoC Example

We will show howsink node bitmasks are computed for
each resource inStep 4. The resultingsink node bitmasks
will be saved in Sink[] and then used for future deadlock
detection inStep 3. Our algorithm stores all the reachable
sink nodes for resource nodej in Sink[][j] (i.e., jth col-
umn of Sink[]). Next time, when a request for resourcej

is blocked (line 9), the algorithm can immediately detect

483

Table 2. The Adjacency Matrix for 5 Pro-
cesses and 4 Resources

q1(USB) q2(FW) q3(ADC) q4(EN)
p1 g r 0 0
p2 g 0 g 0
p3 g 0 0 g
p4 0 g r 0
p5 r g 0 0

deadlock by comparing the requester process bitmask with
the savedsink bitmask in Sink[][j] (line 15).

The following matrices show some data structures (i.e.,
MGrant[], MRequest[], Weights[], FreeUnit[] and SinkPro-
cess[]) that were computed at the last invocation of the al-
gorithm (the abbreviated notations in Table 1 are used):

MGm×n =




1 0 0 0
1 0 1 0
1 0 0 1
0 1 0 0
0 1 0 0




MRm×n =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
1 0 0 0




Wm×n =




2 0 0 0
1 0 1 0
1 0 0 1
0 1 0 0
0 1 0 0




Fn =
[

0 0 0 0
]

SPm =
[

0 1 1 0 0
]T

MGm×n stores the same grant edges from resources to
processes as in Table 2.MRm×n stores the same request
edges from processes to resources as in Table 2.Wm×n

stores the numbers of units of each resource assigned to
each process.Fn shows that all units of every resource have
been granted; thus, there exists no available resource units
in the current system.SPm indicates that in the current
RAG, processesp2 andp3 aresink nodes. Note thatSPm is
computed fromMRm×n using the following equation (line
20):

∀i spi = ∼(∨1≤t≤nmrit). (1)

Right before the iteration, several data structures (i.e.,
Sink[], WorkProcess[], WorkResource[] and PrevRe-
source[]) are initialized in lines 22-25. That is, in our exam-
ple all elements in Sink[] and WorkProcess[] are initialized
to zeros (SK, WP =[0]m×n). WorkResource[] and PrevRe-
soruce[] are initialized as follows:

WRn×n =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 PRn×n =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




The current bit patterns ofWR andPR imply that the
search starts from each resource (and visited each resource
itself). Now the journey to search forsink nodes begins.
The algorithm goes into the iterations of a loop of comput-
ing sink node bitmasks and collects them in Sink[].

First, the algorithm computes WorkProcess[] (i.e., cur-
rently visiting processes) from WorkResource[] (i.e., most
recently visited resources) using MGrant[] (line 27). The

operation in line 27 is equivalent to the following equation:

∀i, j wpij = ∨1≤t≤n(wrjt ∧ mgit). (2)

The computations ofwp1j throughwpmj are equivalent to
finding all processes that hold some units of resourceqj de-
noted in WorkResource[j][] (i.e.,jth row) and storing them
in WorkProcess[][j]. Now let us choose resourceq1 of Fig-
ure 2 as an example to discover itssink nodes and take a
closer look at how the matrices are computed. In the RAG
of Figure 2(b), the units ofq1 are assigned to three pro-
cesses (p1, p2 andp3). At the same time,p5’s request forq1

is blocked. Accordingly, MGrant[][1] is[11100]T (ones at
the1st, 2nd and3rd elements which correspond tog values
in the adjacency matrix), and MRequest[][1] is[00001]T (1
at the5th element which corresponds tor value in the adja-
cency matrix). Before the first iteration, WorkResource[1][]
was initialized as[1000] (line 24). Thus, WorkProcess[][1]
is first computed and stored as the bitmask[11100]T (line
27) sincep1, p2 andp3 are directly connected fromq1. In
the same way, for the rest of resources, their correspond-
ing columns in WorkProcess[] (WorkProcess[][2] through
WorkProcess[][n]) are computed. The following values of
WorkProcess[] result:

WPm×n =




1 0 0 0
1 0 1 0
1 0 0 1
0 1 0 0
0 1 0 0




Then, if any process marked in WorkProcess[][j] is a
sink node, it is inserted into Sink[][j] (line 28). The op-
eration in line 28 is equivalent to the following equation:

∀i, j skij = (wpij ∧ spi) ∨ skij . (3)

For the case ofq1, the algorithm checks whether anyone
is a sink node among the three process nodes (p1, p2

and p3) by comparing WorkProcess[][1] ([11100]T) with
SinkProcess ([01100]T) (line 28). As a result,p2 andp3

are identified as newly foundsink nodes for resourceq1.
Thus, they are saved in Sink[][1] (the2nd and 3rd ele-
ments of the1st column become ones). Similarly, the rest
of Sink[] (Sink[][2] through Sink[][n]) are computed for re-
source2 through resourcen. The following values of Sink[]
result:

SKm×n =




0 0 0 0
1 0 1 0
1 0 0 1
0 0 0 0
0 0 0 0




Next, the algorithm computes WorkResource[] from
WorkProcess[] (just computed), MRequest[] and PrevRe-
source[]. Doing that, the algorithm finds a set of resource
nodes that are directly connected from processes notated

484

in WorkProcess[][j] for each resourcej and stores them in
WorkResource[j][] (line 29). This operation is equivalent
to traveling one step farther from the originated resource
node to another resource node via a process blocked for the
second resource node. The operation in line 29 can be ex-
pressed by the following equation:

∀j, k wrjk = ∨1≤c≤m(wpcj ∧ mrck) ∧ prjk. (4)

To illustrate the computation of WorkResource[], let us con-
tinue with the example forq1. WorkProcess[][1] ([11100]T)
indicates thatq1 now reaches three process nodes (p1, p2

andp3). From these three process nodes,p1 has one out-
going edge (a request edge) toq2; p2 andp3 have no out-
going edges since they aresink nodes. Thus, algorithm
computes WorkResource[1][] as[0100] (line 29), indicating
that q1 can further reach resource nodeq2 via p1 sincep1

is blocked forq2. In the same way, the rest of WorkRe-
source[] (WorkResource[2][] through WorkResource[n][])
are computed for resource2 through resourcen. The fol-
lowing values of WorkResource[] result:

WRn×n =




0 1 0 0
1 0 1 0
0 0 0 0
0 0 0 0




This WR implies the following as can be seen from Fig-
ure 2(b):q1 can reachq2 via p1. q2 can reachq1 andq3 via
p5 andp4, respectively.q3 andq4 have no paths to reach
other resources.

After WorkResource[] is computed, the algorithm up-
dates PrevResource[] to include any resource node that is
marked as 1 (i.e., just visited) in WorkResource[] (line 30).
The operation in line 30 can be expressed by the following
equation:

∀j, k prjk = ∼wrjk ∧ prjk. (5)

Continue with the example ofq1. PrevResource[1][] was
initialized as [0111] (line 25). Currently, the values of
WorkResource[1][] are[0100], meaning the search forq1’s
sink nodes is now visitingq2. Thus, the updated PrevRe-
source[1][] is computed as[0011] (line 30), which signifies
bothq1 andq2 have now been visited (0 indicates “visited”).
This mechanism effectively prevents our algorithm from be-
ing trapped in cycles. The rest of PrevResource[] (PrevRe-
source[2][] through PrevResource[n][]) are computed for
resource2 through resourcen in the same way. The fol-
lowing values of PrevResource[] result:

PRn×n =




0 0 1 1
0 0 0 1
1 1 0 1
1 1 1 0




This matrix implies that starting fromq1, the path has cur-
rently reachedq2; from q2 reachingq1 as well asq3.

After the computations from line 27 through line 30
are finished, the algorithm looks at each row of WorkRe-
source[] (corresponding to each resource) to decide whether
it can stop the search forsink nodes for the resource (line
31-32). If WorkResource[j][] contains all zeros,qj ’s search
for its sink nodes has visited all resource nodes inqj ’s
reachable set. Therefore, Sink[][j] contains a complete bit-
mask forqj ’s reachablesink nodes. Thus,qj ’s search can
be stopped after the current iteration. Note that searches for
different resource nodes may stop at different iterations.As
in this example, after the first iteration is finished inStep
4, for q3 andq4, their corresponding rows in matrixWR

(the3rd and4th rows) contain all zero values. This means
the current values forq3 andq4 in matrix SK (the3rd and
4th columns) contain their completesink node bitmasks.
This informs thatq3 andq4 have theirsink node bitmasks
equal top2 andp3, respectively. Thus, forq3 andq4, there
is no need to perform the search further. Forq1, however,
the 1st row ([0100]) of matrix WR contains one element
whose value is 1 (the2nd element in the row), meaning that
some of the three processes,p1, p2 andp3 (which are stored
as bitmask[11100]T in WorkProcess[][1]), are blocked for
resourceq2. Similarly for q2, the2nd row ([1010]) of ma-
trix WR indicates that either or both of the two processes,
p4 andp5 ([00011]T as notated in WorkProcess[][2]), are
blocked for resourcesq1 andq3. Thus, forq1 andq2, fur-
ther iterations must be performed to track and reach more
sinks.

In the second iteration, all contents corresponding toq1

and q2 are computed in the same way as in the first iter-
ation whereas contents corresponding toq3 andq4 remain
unchanged. The following results after the second iteration:

WPm×n =




0 1 0 0
0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0




SKm×n =




0 0 0 0
1 1 1 0
1 1 0 1
0 0 0 0
0 0 0 0




WRn×n =




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 PRn×n =




0 0 0 1
0 0 0 1
1 1 0 1
1 1 1 0




Now for q2, the2nd row ofWR also contains all zeros. It
means thatq2’s column inSK (the2nd column) contains its
completesink bitmask. Forq1, however, its corresponding
row of matrix WR (the 1st row) still contains an element
whose value is 1. Thus, further iterations must be performed
to track moresinks. After another iteration of computation
is performed forq1, the following results:

WPm×n =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




SKm×n =




0 0 0 0
1 1 1 0
1 1 0 1
0 0 0 0
0 0 0 0




485

WRn×n =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 PRn×n =




0 0 0 1
0 0 0 1
1 1 0 1
1 1 1 0




Now for q1, its row (the1st row) of WR also contains
all zeros. It means that its column inSK (the1st column)
contains its completesink bitmask. From matrixSK, we
can see thatq1 andq2 are bonded to twosink nodesp2 and
p3, while q3 andq4 are bonded to their singlesink nodesp2

andp3, respectively. Note that the search for each resource
node’ssinks only visits the resource nodes in its reachable
set once. This guarantees that the complexity of updating
all sink bitmasks is bounded byO(min(m,n)).

Let us now suppose that from the current state of Fig-
ure 2(b),p2 makes a request forq4 and nothing else changes
in the system. Does this request cause deadlock? Since
q4 has only one unit being used byp3, this request is sus-
pended. Thus,p2 must wait forq4 to become free. Then,
the deadlock detection unit is invoked immediately (Step 3).
As indicated in our algorithm, we simply compareq4’s
sink bitmask Sink[][4] ([00100]T) with the bitmask of
p2 ([01000]T). Since they are different, we can conclude
that this request does not cause deadlock in the system. Ac-
cordingly, allsink bitmasks for all resource nodes are up-
dated inStep 4. After the updating, all resource nodes are
bonded to one singlesink nodep3.

Furthermore, afterp2 is blocked forq4, let us assumep3

makes a request for a unit ofq2. Does this request cause
deadlock? p3 is blocked for this request becauseq2 has
two units being used byp4 and p5. By comparingq2’s
sink node bitmask Sink[][2] ([00100]T) with the bitmask of
p3 ([00100]T), the algorithm immediately determines that
the request causes deadlock.

3.5 Architecture

In this section, we delineate how Algorithm 3.2 is re-
alized in hardware. The simplified view of the architec-
ture of a Multi-unit resource hardware Deadlock Detection
Unit (MDDU) for 3 processes and 3 resources is shown in
Figure 3. We show 3x3 MDDU instead of 5x4, which might
look too messy given the space of the paper. The architec-
ture implements all data structures in Table 1. In Figure 3,
eachMatrix cell contains three elements one each from
MGrant[], MRequest[] and Weights[]. EachSK/WP cell
contains two elements one each from Sink[] and WorkPro-
cess[]. EachWR/PR cellcontains two elements one each
from WorkResource[] and PrevResource[]. The computa-
tions inStep 4of Algorithm 3.2 are performed by acting on
the data structures maintained within the various cells (i.e.,
Matrix cells, SK/WP cells and WR/PR cells).

We used the Xilinx ISE 9.1i to synthesize 5x5 MDDU
on Virtex-II XC2V250 device. MDDU utilizes 757 slices

cell cell cell

cell cell cell

cell cell cell

cell cell cell

cell cell cell

cell cell cell

cellcell

cell cell cell

cell cell cell

decision
cell

pid

sids

cell

Matrix Matrix Matrix

Matrix Matrix Matrix

Matrix Matrix Matrix

SK/WP SK/WP SK/WP

SK/WPSK/WPSK/WP

SK/WPSK/WPSK/WP

WR/PR WR/PR WR/PR

WR/PR WR/PR WR/PR

WR/PR WR/PR WR/PR

Figure 3. Architecture of 3x3 MDDU.

(two slices form one Configurable Logic Block (CLB)). In
total, 650 four-input Look-Up Tables (LUTs) were utilized.
The total equivalent gate count for our design is 8949.

4 Experiment and Discussion

4.1 Target System and Simulation Envi-
ronment

Here we describe a sample target Multiprocessor
System-on-a-Chip (MPSoC) integrating our 5x4 MDDU.
The architecture of the target SoC is similar to Figure 2(a).
It consists of five Motorola MPC755 processors, SRAM
memory of 256MB and four multi-unit dummy resources.
These dummy resources count the specified time (set by
the software) after their units are granted and interrupt the
corresponding processor where a process uses the resource
units when a preset time elapses. Thus, it is sufficient to
use these dummy devices to simulate various deadlock sce-
narios in the system. All components except processors
and SRAMs are implemented in Verilog HDL. The appli-
cation is written in the C language and compiled using
a PowerPC-GCC cross-compiler. We use Atalanta RTOS
version 0.3 [11], a shared memory multiprocessor RTOS,
to manage processes and resources. In order to simulate
such an MPSoC with the multiprocessor operating system,
we use Mentor Graphics Seamless hardware-software Co-
Verification Environment [8] aided by ModelSim for hard-
ware simulation and XRAY for software debugging.

4.2 Application Scenario

We test the 5x4 MDDU with an application consisting of
five processes each running on a processor of the aforemen-
tioned target. Due to space limit, we are unable to describe

486

the scenario in detail, which has been embedded in Sec-
tion 3.4. Instead, we provide a technical report [12] for the
complete explanation of the application.

4.3 Experimental Results

We simulated a series of events including both grants
and requests, which incrementally builds up the resource
allocation situation shown in Figure 2(b). Throughout our
simulation, deadlock detection always takes only two clock
cycles for all events. To demonstrate the reduced detection
preparation time, we count the number of clock cycles be-
tween the moment the detection preparation is triggered and
the moment allWR elements become zeros in ModelSim’s
wave window. The events and their corresponding detec-
tion preparation times are listed in Table 3. Note that all
grants and requests are made for one unit per event accord-
ing to Assumption 2. As shown in the table, MDDU takes
15 clock cycles to compute thesink bitmasks for all re-
sources in the RAG shown in Figure 2(b) at timet11. That
is equivalent to three iterations of thewhile loop in Step
4. In our simulated target, the maximum number of itera-
tions inStep 4can be four at most because of the aforestated
O(min(m,n)) run-time complexity wherem = 5 andn =
4. Finally at timet13, deadlock is detected in the system.

Table 3. Simulated Events and Their Detec-
tion Preparation Clock Cycles on 5x4 Multi-
unit Resource MPSoC
Time Events Prepara Time Events Prepara

-tion -tion
t1 q1 is granted top1 5 t8 q1 is granted top2 10
t2 q3 is granted top2 5 t9 q1 is granted top3 10
t3 q4 is granted top3 5 t10 p4 requestsq3 15
t4 q2 is granted top5 5 t11 p5 requestsq1 15
t5 q2 is granted top4 5 t12 p2 requestsq4 15
t6 p1 requestsq2 10 t13 p3 requestsq2 N/A
t7 q1 is granted top1 10

4.4 Discussion

As both of ours and Shiu’s algorithms have the same
O(min(m,n)) overall run-time complexity, let us compare
various aspects of our algorithm with those of Shiu’s al-
gorithm, and highlight their difference and our novelty. A
summary of the comparison is shown in Table 4. As can be
seen in the table, other than the same overall run-time com-
plexity and the single-request assumption for processes, the
two algorithms are different in all aspects.

5 Conclusion
An O(1) parallel multi-unit resource deadlock detec-

tion algorithm is presented in this paper. The described
algorithm has a run-time complexity ofO(1) for detecting
deadlock andO(min(m,n)) for preparing detection. Com-
pared with Kim’s algorithm [4], deadlock preparation run-
time complexity is significantly reduced fromO(m× n) to

Table 4. The Comparison between Our Algo-
rithm and Shiu’s Algorithm [9]

Feature Ours Shiu’s
Applicable Both multi-unit as well as Only single-unit

systems single-unit resource systems. resource systems.
A resource node can A resource node can

Characteristics have multiple outgoing have at most one
of the RAG edges (grants) and outgoing edge (grant)

multiple incoming and multiple incoming
edges (requests). edges (requests).

The theory A knot is a A cycle is a
behind necessary and sufficient necessary and sufficient

the algorithm condition for deadlock. condition for deadlock.
Key technique Parallel graph traverse Parallel graph reduction

of in search for to remove terminal
the algorithm sink process nodes. edges iteratively.

Detection complexity O(1) O(min(m,n))
Overall complexity O(min(m,n)) O(min(m,n))

O(min(m,n)). For current and future SoCs, our MDDU
provides very fast and deterministic run-time detection of
deadlocks for both multi-unit as well as single-unit resource
systems.

References

[1] International technology roadmap for semiconductors 2006
update. http://www.itrs.net, visited in May 2007.

[2] B. Claude.The theory of graphs. John Wiley & Sons, New
York, 1962.

[3] R. Holt. “Some deadlock properties of computer systems,”
ACM Computing Surveys, 4(3):179–196, 1972.

[4] J. Kim. “Algorithmic approach on deadlock detection for en-
hanced parallelism in multiprocessing systems,” InPAS’97,
pages 233–238, 1997.

[5] J. Kim and K. Koh. “An O(1) time deadlock detection
scheme in single unit and single request multiprocess sys-
tem,” In IEEE TENCON ’91, pages 219–223, 1991.

[6] J. Lee and V. Mooney. “An O(min(m,n)) parallel deadlock
detection algorithm,”ACM Trans. on Design Automation of
Electronic Systems, 10(3):573–586, 2005.

[7] T. Leibfried. “A deadlock detection and recovery algorithm
using the formalism of a directed graph matrix,”Operating
Systems Review, 23(2):45–55, 1989.

[8] Mentor Graphics Corp. Hardware/software co-verification:
Seamless. http://www.mentor.com/seamless, visited in May
2007.

[9] P. Shiu, Y. Tan and V. Mooney. “A novel parallel deadlock
detection algorithm and architecture,” InCODES’01, pages
73–78, 2001.

[10] A. Shoshani and E. Coffman. “Prevention, detection and re-
cover from deadlock in multiprocess, multiple resource sys-
tems,” Technical Report 80, Princeton University, 1969.

[11] D. Sun, D. Blough and V. Mooney. “Atalanta: A new multi-
processor RTOS kernel for system-on-a-chip applications,”
Technical Report, GIT-CC-02-19, College of Computing,
Georgia Tech, 2002.

[12] X. Xiao and J. Lee. “A novel parallel deadlock detection
algorithm and hardware implementation for multi-unit re-
source systems,” Technical Report, TR-ENGT-11, ECE De-
partment, IUPUI, 2007.

487

