Exploiting eDRAM bandwidth with data prefetching:
simulation and measurements

Valentina Salapura, José R. Brunheroto, Fernando Redigolo, Alan Gara

IBM Thomas J. Watson Research Center
Yorktown Heights, NY

Abstract

Compared to conventional SRAM, embedded DRAM
(eDRAM) offers power, bandwidth and density advantages
for large on-chip cache memories. However, eDRAM suf-
fers from comparatively slower access times than conven-
tional SRAM arrays. To hide eDRAM access latencies,
the Blue Gene/L®) supercomputer implements small private
prefetch caches.

We present an exploration of design trade-offs for the
prefetch D-cache for eDRAM. We use full system simula-
tion to consider operating system impact. We validate our
modeling environment by comparing our simulation results
to measurements on actual Blue Gene systems. Actual ex-
ecution times also include any system effects not modeled
in our performance simulator, and confirm the selection of
simulation parameters included in the model.

Our experiments show that even small prefetch caches
with wide lines efficiently capture spatial locality in many
applications. Our 2kB private prefetch caches reduce ex-
ecution time by 10% on average, effectively hiding the la-
tency of the eDRAM-based memory system.

1 Introduction

Future microprocessor designs will require new design
trade-offs to address new constraints on architectures. The
increasing compute power available per chip from the use
of chip multiprocessors is not matched by a commensurate
increase memory bandwidth via off-chip I/O. This may lead
to a potentially unbalanced and inefficient design.

SRAM arrays are conventionally used as on-chip cache
memories to obtain a significant reduction in I/O bandwidth
requirements. However, the use of SRAM arrays is limited
by the comparatively low density, and high power dissipa-
tion. SRAM memories are also suffering from manufactura-
bility constraints limiting future access speeds due to device
variation limiting the ability to accurately match FET de-
vices of storage cells [8, 12].

A promising solution to these multiple constraints is the
adoption of embedded DRAM (eDRAM) for high-capacity,
high-density on-chip caches. Embedded DRAM merges

1-4244-1258-7/07/$25.00 ©2007 IEEE

DRAM and logic fabrication technologies to build the fa-
miliar 1T DRAM cell into a logic chip, and offers a signif-
icant increase in memory capacity per given unit area over
SRAM, as well as low power operation and very wide data
ports [13]. However, eDRAM typically will have a higher
access latency than an SRAM-based solution. This could be
alleviated by deploying a prefetch scheme to decouple ap-
plication access latency from eDRAM access latency, and
using the available eEDRAM bandwidth to hide latency.

The Blue Gene/L system is the first high performance
computing (HPC) system that delivers on the promise of on-
chip eDRAM for increased performance at lower cost. The
Blue Gene/L compute chip [5, 19, 20] has two cores, each
with private L1 instruction and D-caches. Misses at the L1
level are given to a small private prefetch cache that acts as
the L2. Each of the two L2 prefetch caches communicates
with the L3 on-chip 4MB eDRAM cache, which is shared
between the two processors.

The work described here evaluates the architecture for
the small private prefetch caches with respect to hiding the
access latency to eDRAM in a multiprocessor environment.
Many previous studies focus on application traces only and
may neglect the impact of the interaction between applica-
tion software and operating system. In contrast, we study
prefetch behavior for a set of compute-intensive workloads
using full system simulation. We present an initial evalua-
tion of the prefetch algorithms in prior work [6]. Here we
compare our simulation results with measurements on ac-
tual Blue Gene systems to evaluate simulation accuracy and
decisions made in the design process.

The contributions of this paper are: (1) an exten-
sive simulation-based design space exploration of prefetch
cachees for an on-chip eDRAM cache, (2) an analysis of
operating-system impact on prefetch effectiveness, and (3)
a validation of simulation results with hardware measure-
ments on a Blue Gene/L system.

2 Blue Gene Memory Subsystem

The Blue Gene/L Compute chip (BLC chip) contains
two PowerPC 440 processor cores, each with a SIMD float-
ing point unit, as illustrated in Figure 1. Each PowerPC

504

PLB (4:1)| 32k 11/32k D1

256
7

PPC440 [7
Shared L3 ANVB
" eDRAM
Double FPU s Directory | 1024b data
hared for 144b ECO
L3 Cache
32K 11/32k D1 256, SRAM eDRAM or
128 WEGC On-Chip
PPC440 | 2 Memory
i 256
-
Double FPU
128
DDR
Ethernet JTAG ; Global Controller
Ghit JTAG 6hout,6hin 3bout,3bin 4 global 144b DDR
Ethernet 14Gbis 28Gbs barriersor interface

per link per link interrupts

Figure 1. Blue Gene/L compute chip.

440 core contains 32kB private L1 I- and D-caches with
32B lines, and interfaces to a private prefetch L2 cache
with 128B buffer line size. The L2 caches communicate
with a shared 4MB L3 on-chip eDRAM cache with 128B
lines. The eDRAM is configured as two 2MB interleaved
banks [16]. The prefetch L2 cache decouples the number
and timing of requests generated by the core from requests
to the L3. The L2 cache stores wide L3 cache lines, and sat-
isfies multiple narrower L1 requests. This reduces latencies
for L1 requests along with traffic to the L3. Comparing the
Blue Gene/L memory system design to a traditional mem-
ory system design with an SRAM-based L2 cache in terms
of complexity, area, and power/performance, the present de-
sign offers several advantages. There are several different
ways to make this comparison:

e Remove the prefetch cache and use the eDRAM as L2:
cache size remains the same, but latency increases. We
simulate this configuration, which we heretofore refer
to as the “no prefetch cache”.

e Keep the L3 eDRAM cache, and add a standard L2
SRAM-based cache, having the same size (2kB) as our
prefetch cache. Such a small L2 cache would be inef-
fective. A larger L2 unacceptably increases chip area.

e Remove the eDRAM L3, and use a standard SRAM
L2. To maintain chip area, the 4MB eDRAM can be
replaced by a IMB SRAM. In addition, the eDRAM
solution requires about four times less power than a
1/4 sized SRAM solution. Power considerations are
especially important for embedded and large-scale sys-
tems such as Blue Gene.

It was a Blue Gene/L project requirement to reuse an un-
modified PowerPC core available as a hard macro. Any core
changes would have incurred significant cost and would
have delayed introduction of the system. The PowerPC 440
L1 cache is tightly integrated with the load-store unit, and
any changes to the L1 cache would have required changes
to the processor. Such changes affect the entire core design,
requiring expensive re-timing and re-validation. By deploy-
ing an external prefetch cache, the pre-tuned PowerPC 440
hard macro could be placed unmodified and could achieve
peak clock frequency without design rework.

By prefetching into a dedicated prefetch cache, and
keeping prefetched data out of the L1 D-cache until ref-

PowerPC with integrated
L1 cache

Stream detection Prefetch cache

buffe
iters Line buffers

Prefetch

engine
address 13 data

Shared eDRAM cache

Figure 2. Prefetch cache architecture.

erenced by the application, we avoid pollution from pre-
maturely fetching data that could potentially displace those
still needed by the processor. This is particularly impor-
tant for carefully tuned algorithms that size their working
sets to efficiently exploit the memory subsystem. Extrane-
ous prefetching in this environment interferes with delicate
tuning for peak performance.

2.1 Prefetch Cache Architecture

Figure 2 illustrates the prefetch cache architecture ex-
plored in this work and deployed as the L2 D-cache in the
Blue Gene/L. compute chip. The prefetch cache consists
of line buffers storing demand-fetched and prefetched lines
from eDRAM, a prefetch engine that initiates prefetches
and manages line buffer replacement, and a stream detec-
tor unit that detects data streams.

On each L1 D-cache miss, the prefetch cache directory is
checked. If the requested data are available in the prefetch
cache, they are forwarded to the L1 D-cache. If the request
misses in the prefetch L2 cache, only 1/4 of the addressed
L3 line (the portion corresponding to the requested L1 line)
is fetched from the L3 and is buffered in the L2 (in a portion
of a dedicated line buffer) before it is forwarded to the L1.
Line buffers are fully associative. Once prefetched, lines
reside in the prefetch cache until other requests evict them.

To detect streams, we use an N-deep history queue for
storing prefetch cache address tags [17]. We refer to this
as the stream detection buffer. When the processor requests
data that miss in the L1 D-cache, the prefetch unit records
the corresponding L2 address in the stream detection buffer.
If the requested address matches an L2 address recorded in
the stream detection buffers, but the tag does not match, the
requested L3 cache line is fetched and stored in a line buffer,
and a stream is established. The first subsequent access to
stream data resident in the line buffer triggers a prefetch
request that loads one L3 cache line (corresponding to four
L1 lines) to the prefetch cache.

An alternative approach avoids stream detection buffers,
but instead issues fetch requests for each new L2 D-cache
request not satisfied in the prefetch cache along with a
prefetch request for the next line. This approach automat-
ically prefetches a data stream based on only one request.
We refer to this as optimistic prefetch stream detection. Ad-
vantages of this approach include using prefetch address

505

NAS T Instructions L1 Misses Misses per
1000 instructions
BT | 547,414,050 | 30,788,712 56.24
CG | 349,304,498 | 19,824,670 56.75
FT | 645,116,212 | 37,248,944 57.74
IS 30,697,133 564,715 18.40
LU 238,891,062 | 10,934,076 45.77
MG 56,399,797 2,897,583 51.38
SP | 273,988,939 | 20,660,969 75.41

Table 1. NAS Benchmarks Characteristics

tags associated with each line buffer as the address tracking
method for identifying streams. This reduces the number of
state bits that must be maintained. Optimistic prefetching is
more aggressive, and thus issues more prefetches to the L3.

3 Methodology

We use full system simulation and two different operat-
ing systems to explore the effectiveness of stream prefetch-
ing for supercomputer applications. We use BGLsim [7],
a full system simulator for the Blue Gene/L system based
on the Mambo PowerPC simulator [4]. BGLsim is archi-
tecturally accurate at the instruction-set level. BGLsim ex-
poses all architected features of the hardware, including
processors, floating-point units, caches, memory, intercon-
nection, and other supporting devices. The simulator runs
unmodified system and user software as used on actual Blue
Gene hardware. The simulator includes interaction mecha-
nisms for inspecting the entire internal machine state, al-
lowing for more flexible and detailed instrumentation than
that possible with real hardware.

In our experiments, we use the L1 address miss sequence
containing both application and operating system references
for a variety of numerically intensive applications. We opt
for a multi-model simulation environment comprised of two
modules: one is the full system simulator (with pseudo cy-
cle accuracy) that takes binary code as input, and the other
is based on traces. The latter is faster, since it abstracts out
many details, and is useful for coarse design space explo-
ration, yielding design parameters that we then evaluate in
full detail using the first model.

The full system simulator can simulate a multi-node sys-
tem, but here we use it for simulation of a single Blue
Gene/L node. We opt for a single processor simulation,
since having multiple processors on a chip does not affect
the prefetch hit rate. The reason for this is that prefetch
cache is private to each processor, and there is no inter-
processor interaction for prefetch caches. Our simulation
model assumes that the subsequent request to the L3 is sat-

Splash | Instructions | L1 Misses Misses per
1000 instructions
LU 57,687,452 343,118 5.95
FFT 60,373,803 712,177 11.80
Radix | 87,116,807 582,659 6.69
Ocean | 30,005,066 | 1,843,293 61.43

Table 2. Splash-2 Benchmarks Characteris-
tics

0.8 -

0.6 -

Hit rate

0.4

0.2

4 8 16 32

N

Figure 3. Varying stream detector size for the
NAS benchmark.

isfied with a constant L3 latency, but in the actual hardware,
the L3 latency depends on several factors (e.g., page already
open, or number of pending load requests).

To characterize prefetch cache performance we use
prefetch cache hit rate, prefetch cache miss rate, and execu-
tion time (as predicted by the Blue Gene/L Pseudo Accurate
Timing Model) [1]. The prefetch hit rate is the fraction of
L1 D-cache misses that hit in the prefetch cache.

In our experiments, we use applications from the
NAS [2] and Splash-2 [22] suites. We opt to use these pub-
licly available applications, as they are representative of a
wide range of scientific applications. We concentrate our
efforts on scientific-computing intensive applications, since
these are the target workloads for Blue Gene. Here, we re-
port on all NAS class S benchmarks and Splash-2 kernel
applications (LU, Radix, FFT), along with the ocean ap-
plication. Tables 1 and 2 show benchmarks used, number
of instructions executed, number of absolute L1 D-cache
misses, and number of L1 D-cache misses per 1000 instruc-
tions which represent the total prefetch opportunity.

4 Experiments and Simulation Results

We model the prefetch cache to study the impact of de-
sign parameters, and we examine two operating systems
with respect to prefetch cache hit rate and execution time.
We first vary the size of the stream detector buffers to de-
termine the minimum size yielding good prefetch hit rates.
Then we vary the number of line buffers, and explore the
impact of using various replacement policies for them. We
evaluate the impact of supporting bi-directional stream de-
tection, and analyze the impact of the operating system
used. To fully understand the impact of prefetching on
the overall memory subsystem, we determine the impact of
prefetching on memory bandwidth to the shared L3 cache,
and on application execution time. We also evaluate the
impact of the prefetching, as opposed to using line buffers
without prefetch support.

4.1 Stream Detector Buffers

When detecting data streams via the N-deep history
queue, a new stream is started only if an L2 request hits

506

0.8

0.6 -

Q A
®
= —-BT
T -m-CG
0.4 < —~-FT
—e-IS
LU
0.2 —o—MG
A SP
—o—Mean
0 T T T
7 15 23 31

Figure 4. Varying the number of line buffers in
the prefetch cache for the NAS benchmark.

in the address history queue, requiring two requests to es-
tablish a data stream. Figure 3 shows behavior of a prefetch
cache with stream detection. We simulate both NAS and
Splash-2 benchmarks, but space limitations require that we
list only results for NAS. For this simulation, we use a
prefetch cache large enough not to limit the number of
streams that can be tracked.

We vary the number of stream detector buffers from 2-
32. Results indicate that using stream detector sizes above
16 does not significantly improve hit rates, except for SP.
For SP, adding more stream buffers continues to increase
the prefetch hit rate, as more of the distinct data streams
can reside in the prefetch cache. For most applications,
16 stream detection buffers are sufficient to detect all data
streams. Splash-2 benchmarks show similar trends.

4.2 Prefetch Cache Size

To determine the optimal number of prefetch line buffers,
we vary their number from 7-31 while fixing the stream de-
tector size at 16. We change numbers of line buffers in mul-
tiples of eight. One line buffer is used for data returned
from L3 demand fetches not buffered in L2 (e.g., L2 re-
quests without an established stream), hence the odd num-
ber of line buffers available for stream prefetches. Results
are illustrated in figure 4.

The effect of increasing the prefetch cache size on hit rate
is non-linear. Choosing a prefetch cache size of seven lines
clearly fails to exploit the full prefetch potential: 15 lines
yields significantly better performance. For the NAS bench-
marks, selecting 23 line buffers increases hit rates across all
benchmarks on average by 2.7%, with the biggest benefit
for SP, with a hit rate increase of 7%. Using 31 line buffers
only increases the hit rate for SP. Splash-2 simulations con-
firm that selecting more than 15 line buffers delivers only
incremental performance gains at significant area cost.

4.3 Prefetch Cache Replacement Policy

The replacement policy determines how streams are aged
out of the prefetch cache to make room for new data. We
model several replacement policies: round-robin, random,
least recently used (LRU), and round-robin skipping the

0.6

@ Round-Robin
B Random

0.5 JOLRU
ORRMRU

W Optimal

0.4

Miss rate
e
w

0.2 1

0.1 4

BT CG FT IS LU MG SP Mean

Figure 5. Prefetch cache miss rate for various
line buffer replacement policies for the NAS
benchmarks.

three most recently used (RRMRU). We also include op-
timal replacement, one that relies on future knowledge (and
thus cannot be implemented in hardware), to show theoreti-
cal upper bounds for stream detection.

Figure 5 presents effects of varying replacement poli-
cies on miss rates for NAS. For all applications, the var-
ious replacement policies are positioned between optimal
replacement and random replacement. As expected, LRU is
the best choice for most applications, but is the most com-
plex policy to implement in hardware. Both round-robin
and RRMRU (round-robin with skipping the three most re-
cently used lines) offer comparable performance to LRU.
RRMRU offers better performance than round robin re-
placement. The RRMRU policy is as simple to implement
in hardware as round-robin, requiring only the addition of
two latches per line buffer to record the MRU status for the
last three requests.

4.4 Support for Bidirectional Streams

All results so far assume streams with ascending ad-
dresses. We also explore whether bidirectional stream sup-
port (i.e., detecting and prefetching streams with positive
and negative strides) helps performance. To implement bidi-

O Ascending
W Bidir

0.5

0.4

Miss rate
o
©w

o
N

0.1

BT CG FT IS LU MG SP Mean

Figure 6. Bidirectional stream support using
NAS benchmarks.

507

Effective Physical
address address
0x1000
0xE0000 |
0x1F80 4-‘ 0x2000
incorrect
O0xE1000 |—— prefetch
0x4000
0xE2000 —_ 0x4F80
\ 0x7000
TLB. 0x7F80
translation

Figure 7. Linux page translation and prefetch-
ing.

rectional stream support, each line buffer stores two extra
bits recording the L1 line address of the first request. For
subsequent requests to prefetch cache lines, the address of
the new request is compared to that saved, and we deter-
mine whether the new address is descending or ascending
compared to the previous request. Based on this, the next
prefetch request is issued to access the ascending or de-
scending address.

Figure 6 shows the effect of changing from ascending
stream detection to bidirectional detectionr. There is no sig-
nificant benefit from the bidirectional stream detector, indi-
cating that there are no significant access patterns with neg-
ative strides present in these benchmarks. Also, scientific
workloads, in general, do not show negative-stride streams.

4.5 Operating System Impact

We also explore the impact of using different operating
systems on prefetch cache performance. We compare two
models representing a full-fledged multithreaded UNIX op-
erating system (Linux) and a streamlined single-threaded
kernel solution (the compute node kernel CNK employed
in Blue Gene/L [15]). CNK implements static mapping of
virtual addresses to physical addresses. Linear mapping en-
sures that an application’s access patterns in virtual address
space are reflected in the physical address space of the mem-
ory subsystem. In comparison, a standard Linux kernel uses
a 4kB page. Establishing page translations in response to

@ Linux
ECNK

]

Mean

0.8 -

0.6 -
0.4 -
0.2 -
0 : ‘ ‘
FFT RDX

LU

Hit rate

Figure 8. Splash-2 benchmarks on CNK and
Linux.

0.5
@ Optimistic
W Stream detector

0.4 -

Miss rate
o
w

o
[

0.1 -

BT CG FT IS LU MG SP Mean

Figure 9. Miss rate for the optimistic and
stream detector buffers prefetching for the
NAS benchmark.

demand paging causes the kernel to map continuous virtual
address spaces to discontinuous physical 4kB pages, as il-
lustrated in Figure 7. At page boundaries, the prefetch en-
gine continues to prefetch from the contiguous physical ad-
dress, which may not match the virtual address access pat-
tern. Thus, streams must be re-established, and bandwidth
and access efficiency is lost at page transitions. Figure 8
compares the impact of memory allocation policies in Linux
and CNK on prefetch cache hit rates.

With small pages, the PowerPC440 processor’s 64-entry
TLB cannot contain the entire address space for memory
and I/O devices of a Blue Gene node. Additional degrada-
tion is introduced when TLB entries must be reloaded. This
is particularly expensive in environments without hardware-
managed TLBs, where each miss causes an exception. This
effect is somewhat mitigated in more recent Linux versions
that introduce support for large pages.

4.6 Optimistic vs. Stream Detector Buffers

To evaluate the efficiency of the stream detection buffer,
we compare it against optimistic prefetching (described
in 2.1). Figure 9 gives miss rates for optimistic and stream
detector prefetching schemes. For some benchmarks (BT,
FT and LU), the optimistic approach yields lower miss
rates, but for the others, both approaches yield roughly the

@ Optimistic
W Stream detector

1,200

1,000

@

=]

=]
L

Execution time (million cycles)
B [~}
(=3 (=3
o o
|

n

=1

S
[

BT CG FT IS LU MG SP

Figure 10. Execution time for the optimistic
and stream detector buffers prefetch compar-
ison for the NAS benchmark.

508

W Prefetches 00 Demand @ Establish str

o o oS
N > o
.

eDRAM accesses

o
L

Figure 11. Normalized breakdown of eDRAM
accesses for the optimistic vs. stream detec-
tor prefetching for the NAS benchmarks.

same miss rates. We compare execution times for the two
prefetching schemes, illustrated in Figure 10. Execution
times for both approaches are remarkably similar for all
NAS benchmarks, with the largest difference being 1.8%.
The optimistic approach has shorter execution times for BT
and FT, and the stream detection buffer shows better execu-
tion time for CG.

Optimistic prefetching is more aggressive and issues
more prefetch requests to the L3, thus we expected that 1.3
bandwidth requirements would increase. However, the op-
timistic prefetcher produces fewer accesses for most work-
loads (as exemplified by the FT benchmark), while the
stream detector produces fewer accesses for other work-
loads (as exemplified by SP), as illustrated in Figure 11. The
breakdown of L3 accesses into categories gives more in-
sight: we classify the number of L3 accesses into two broad
request categories, demand requests and prefetch requests.
For our stream detection buffers, we further classify demand
fetches into demand requests and stream-establishing de-
mand requests (i.e., a demand request hitting in the stream
detection buffers and thereby causing a stream to be identi-
fied).

As expected, optimistic prefetching initiates a higher
number of L3 prefetch accesses relative to the stream de-
tector. However, the number of demand accesses is larger
for stream detector prefetching, resulting in a larger num-
ber of total accesses. The breakdown of demand fetches for
the stream detector shows the cause of those demand ac-
cesses: when a stream has not been detected, no buffer is
allocated to store a wide L3 line for future accesses. As a
result, two subsequent demand accesses (a demand access
to an L3 line and a second, stream-establishing demand ac-
cess to the same L3 line) are performed before establishing a
stream. In comparison, optimistic prefetching immediately
assigns a line buffer and retains the entire L3 cache line for
future accesses, thereby obviating the need for performing
more accesses to the same line.

4.7 Prefetch Cache Performance Characteristics

To evaluate the efficiency of the prefetch cache, we com-
pare the two prefetch schemes — stream detector buffers
and optimistic prefetching — with application performance

T Optimisti

W Stream

O L2 prefetch di: ONo L2

e
©
f
I
I
I
I
[
I
I
T

Normalized execution time
I o
» o

0.2 -

L A

BT CG FT IS LU MG SP Mean
Figure 12. Normalized execution time for

the two prefetch schemes, L2 with disabled
prefetching, and without the prefetch cache.

results obtained when prefetching is disabled, but L2 line
buffers are used. We also compare these schemes with
the configuration without the L2 prefetch cache. Figure 12
shows normalized execution times for the four approaches.
The prefetch cache reduces execution time for both prefetch
methods by 12%, on average. The biggest improvement
is achieved for the CG benchmark (22%), whereas for the
LU benchmark the performance improvement is only 2%.
Simulation results show a performance advantage when us-
ing prefetching versus just exploiting line buffers without
prefetching. While line buffers reduce execution time by
about 10%, on average, prefetching improves performance
by an additional 2%—5% for all applications studied.

The second advantage of the prefetch cache is reduc-
tion in number of accesses to the L3, which reduces con-
tention for the L3 cache port among the two L2 prefetch
caches, the network interface, and the memory controller.
Figure 13 shows normalized breakdown of L3 accesses for
both prefetch schemes and without the L2 prefetch cache
for the NAS benchmarks. The prefetch cache reduces L3
accesses by 60%, on average, for all NAS benchmarks. This
is due to the streaming accesses exhibited by most scientific
application, and thus buffering the eDRAM data in wide
128B prefetch cache lines dramatically reduces the num-

\D Establish str B Prefetches [1Demand \

o
>

e
N

eDRAM accesses

=]
L

Mean

Figure 13. Normalized breakdown of eDRAM
accesses for the two prefetch schemes, and
for configuration without the prefetch cache.

509

@ Opt HW EOpt sim
13 O Str. det. HW OStr. det. sim
: B Hno L2 HW Eno L2 sim

o 1.2
E il h
b i
2 114 -
3
o
%
3 1
°
@
N
5 09 H
£
o
Z 0.8+

0.7

0.6 T T T T T

BT CG FT IS LU MG SP Mean

Figure 14. Hardware measurement execution
time and simulated execution time (normal-
ized) for the NAS benchmark.

ber of requests needed. The two prefetch schemes show re-
markably similar characteristics in terms of execution time
and eDRAM accesses.

5 Hardware Measurements

To verify our simulation results, we perform extensive
empirical performance analysis. Here, we report hardware
measurement results for NAS benchmarks. Figure 14 shows
normalized execution times for three configurations imple-
mented in hardware, and compares the measured execu-
tion times to simulated execution times for each bench-
mark. The three implemented hardware configurations are
the two prefetch schemes and L2 disabled (which bypasses
L2). Hardware measurements confirm trends shown by sim-
ulations: significant improvements in performance are due
to the prefetch cache. Both hardware and simulation results
are normalized results (e.g., hardware results are normalized
using hardware optimistic prefetch results, and simulation
results are normalized using optimistic prefetch simulation
results) to eliminate systematic deviations between simula-
tor and hardware measurements.

Figure 15 plots simulation error expressed as a differ-
ence of simulated execution time in cycles and measured
hardware execution time over the corresponding measured

\[] Optimistic B Stream detector [No prefetch cache\

0.3
0.25

S

£ 0.2

o

c

S

5 0.15 -

=]

E

]

AR

N

5

E

5 0.05 -

-4

0 -
BT CG FT 1S LU MG SP Mean
-0.05

Figure 15. Simulation error against hardware
measurements for the NAS benchmark.

hardware execution time. Simulation results are typically
within 10-20% of actual hardware measurements, including
all system effects and operating system interactions. Sim-
ulation results are conservative in projecting both baseline
performance, and even more so, in modeled improvements.
Simulation error compares favorably to the only other work
published on correlating simulated results against actual
hardware measurements for the FLASH system [10]. This
confirms the quality of our simulation environment, and val-
idates the decision to go with a full system simulator for the
Blue Gene system.

6 Related Work

Data prefetching has been widely explored. Ideally, only
needed data are prefetched, so the data are ready when the
processor needs them. However, prefetching unneeded data
reduces available memory bandwidth for other participants
on the memory bus. Moreover, the data cache is polluted by
prefetched data displacing useful data.

All prefetch schemes can be grouped into hardware
prefetching, software prefetching, and hybrid techniques.
Hardware prefetching needs no modification of existing ex-
ecutables, and can be implemented with relatively simple
hardware. Software prefetching is generally based on ap-
plication properties obtained at compilation time and/or run
time. While it requires no hardware support, the application
suffers additional overhead (e.g., code expansion), runtime
cycles for prefetching instructions, and increased register
usage.

Early work on cache prefetching includes the one-block-
lookahead (OBL) scheme by Smith [21]. This approach ini-
tiates a prefetch for (i + 1)-th block into the D-cache when
the i-th block is accessed. Jouppi [14] extends this idea by
introducing external stream buffers to hold prefetched data.
Palacharla [17] proposes several improvements to stream
buffers. They limit the number of unnecessary prefetches
by using a history buffer to detect data streams, and prefetch
only for detected streams.

Gschwind [11] prefetches into stream buffers under pro-
gram control. Prefetch streams are identified by prefetch
register FIFOs, and software can specify arbitrary strides.
The PowerPC architecture supports data stream prefetching
into L1 cache with appropriate data-stream touch instruc-
tions. However, these approaches require significant pro-
grammer investment (or appropriate compiler support) to
specify streams. Lee et al. [24] evaluate performance of sev-
eral prefetching cache architectures for multimedia applica-
tions. Puzak et al. [18] discuss prefetching metrics and ana-
lyze potential for prefetching in SPECcpu and OLTP work-
loads. McKee [23] combines a stride-based reference pre-
diction table to prefetch L2 cache lines, and a memory con-
troller to dynamically schedules accesses, delivering good
speedups for scientic applications.

Sequential prefetching techniques perform poorly for se-
quences of irregular access patterns, as in pointer chasing,
where the code follows a serial chain of loads. The approach
described in Collins et al. [9] uses a pointer cache to assist
prefetching for pointer load sequences.

510

7 Conclusion

Large capacity eDRAM caches make high bandwidth
access to high capacity on-chip storage possible by offer-
ing both wide data paths and high on-chip transfer speeds.
In conjunction with chip-multiprocessor solutions, we can
deliver increased performance at low power, with reduced
bandwidth requirements to off-chip memory. eDRAM is
characterized by low power, high density, and high band-
width, but higher latency. Prefetching fundamentally trades
bandwidth to hide access latency. This study presents an
exhaustive analysis of design options for a prefetch cache
designed specifically to interface to a large L3 cache imple-
mented with embedded DRAM. We concentrate on perfor-
mance of supercomputer applications, and consider operat-
ing system impact.We use full system simulation to generate
representative cache miss behavior, including OS interac-
tion, and use full L1 miss sequences to explore the prefetch
cache design space.

In architectures where prefetching is implemented within
a cache, careful prefetching is important, so as not to pol-
lute the cache. This equation has changed for the archi-
tectures where prefetch cache lines are outside of the L1.
Using wide prefetch cache lines captures spatial locality
present in many applications (and, in particular, many HPC
workloads), exploiting wide L3 lines of our eDRAM cache
efficiently. High bandwidth of the shared eDRAM cache
can sustain both processors’ memory requests. This en-
ables efficient data stream prefetching, reducing execution
time. For the Blue Gene/L architecture, the prefetch cache’s
size is only 2kB per processor, yet it reduces execution
time across many workloads by 10%, on average. While
prefetching is not a complete solution to memory latency
issues, we find that prefetching combined with high density
on-chip eDRAM-based caches is a successful solution for
the systems and applications we study.

8 Acknowledgments

The Blue Gene/L system resulted from the dedicated work of a
large team, and we thank all members of that team. We acknowl-
edge, in particular, contributions by Dirk Hoenicke, who was re-
sponsible for the design of the stream prefetching logic. We thank
Sally A. McKee, John-David Wellman and Michael Gschwind for
many useful discussions, and for their help in the preparation of
this paper, and we thank Thomas Puzak and Ruud Haring for
their suggestions during the preparation of this manuscript. The
Blue Gene/L project has been supported and partially funded by
the Lawrence Livermore National Laboratories on behalf of the
United States Department of Energy, under Lawrence Livermore
National Laboratories Subcontract No. B517552.

References

[1] L. R. Bachega et al. The BlueGene/L pseudo cycle-accurate
simulator. In 2004 IEEE International Symposium on Perfo-
mance Analysis of Systems and Software, Austin, TX, March
2004.

[2] D. Bailey et al. The NAS Parallel Benchmarks 2.0. Technical
Report NAS-95-929, NASA Ames Research Center, Decem-
ber 1995.

[3] M. Blumrich et al. A holistic approach to system reliability in
Blue Gene. In International Workshop on Innovative Archi-

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15] J.

(16]

(17]

(18]

[19]

[20] V.

21] A

[22]

[23]1 C

[24]

511

tecture for Future Generation High-Performance Processors

and Sgstems IEEE Computer Society Press, 2006.
P. Bohrer et al. Mambo — a full system simulator for the pow-

erpc architecture. ACM SIGMETRICS Performance Evalua-

tion Review, 31(4), March 2004.
A. A. Bright et al. Creating the BlueGene/L supercomputer

from low power SoC ASICs. In Digest of Technical Pa-
pers, 2005 IEEE International Solid-State Circuits Confer-

ence, pages 188-189, 2005.
J. Brunheroto et al. Data cache prefetching design space ex-

ploration for Blue Gene/L supercomputer. In Proc. of SBAC-

PAD, October 2005.
L. Ceze et al. Full circle: Simulating Linux clusters on Linux

clusters. In 4th LCI International Conference on Linux Clus-

ters: The HPC Revolution 2003, San Jose, CA, June 2003.
L. Chang et al. Stable SRAM cell design for the 32 nm

node and beyond. In VLSI Symposium on Technology, Kyoto,

Japan, June 2005.
J. Collins et al. Pointer cache assisted prefetching. In 35th

Annual IEEE/ACM International Symposium on Microarchi-

tecture MICRO-35, 2002.
J. Gibson et al. FLASH vs. (simulated) FLASH: closing the

simulation loop. In 9th International conference on Archi-
tectural support for programming languages and operating

systems, Cambridge, MA, 2000. ACM Press.
M. Gschwind et al. Vector prefetching. ACM Computer Ar-

chitecture News, 23(5):1-7, December 1995.
M. Gschwind et al. Explomng fine-grained memory locality

with predictive dispatch. IBM Research Report RC23633,
IBM TJ Watson Research Center, Yorktown Heights, NY,

2004.
S. S. Iyer et al. Embedded DRAM: Technology platform for

the Blue Gene/L chip. IBM Journal of Research and Devel-

Nnment 49(2/3), 2005.
Jouppi. Improving direct-mapped cache performance by

the addition of a small fully-associative cache and prefetch
buffers. In 17st International Symposium on Computer Ar-

chitecture, pages 364-373, May 1990.
E. Moreira et al. BlueGene, programming and operating

environment. IBM Journal of Research and Development,

49(2/3), 2005.
M. Ohmacht et al. Blue Gene/L compute chip: Memory and

Ethernet subsystem. IBM Journal of Research and Develop-

ment, 49(2/3), 2005.
S. Palacharla et al. Evaluating stream buffers as a secondary

cache replacement. In 21Ist International Symposium on

Computer Architecture, April 1994.
T. Puzak et al. When prefetching improves/degrades per-

formance. In ACM Computing Frontiers 2005, Ischia, Italy,

2005. ACM Press.
V. Salapura et al. Power and performance optimization at

the system level. In ACM Computing Frontiers 2005, Ischia,

Ital , May 2005. ACM Press.
alapura et al. Exploiting workload parallelism for perfor-

mance and power optimization in Blue Gene. IEEE Micro,

26(5) September 2006.
. Smith. Cache memories.

14:473-530, September 1982.
S. C. Woo et al. The SPLASH-2 programs: Characterization

and methodological considerations. In 22nd International
Symposium on Computer Architecture, pages 24-36, Santa

Mar herita L1%ure, Italy, June 1995.)
ang and S. McKee. Hardware-only stream prefetching

and dynamic access ordering. In /4th ACM International
Conference on Supercomputing, pages 167-175, Santa Fe,

NM, May 2000.
D.FE Zucker et al. Hardware and software cache prefetching

techinques for MPEG benchmarks. IEEE Transactions for
Circuits and Systems for Video Technology, 10(5):782-796,
August 2000.

ACM Computer Surveys,

