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Abstract

A methodology for constructing circuit-level mismatch
models and performing yield optimization is presented for
CMOS analog circuits. The methodology combines statisti-
cal techniques with direct investigation of circuit behavior,
and achieves model simplification and computational effi-
ciency while ensuring sufficient accuracy. The circuit-level
mismatch model can be used in performance characteriza-
tion and yield estimation, both important in providing infor-
mation for circuit reliability analysis. The proposed yield
optimization technique consists of constructing and refining
a yield model over the designable parameters, and ensures
fast convergence to the global optimal design. The experi-
mental results on two representative circuits confirm the ef-
ficiency and effectiveness of the proposed method.

1. Introduction
With the fast scaling of IC fabrication technology in the

past decade, device mismatch caused by process variations
has become a highly challenging problem for the design
and analysis of CMOS analog circuits. This trend can be
attributed to two important factors. First, the structure of
matched transistor pairs is widely used in most CMOS ana-
log designs. Such a structure is robust with respect to pa-
rameter deviations of the corresponding transistor pair in the
same direction, while being very sensitive to parameter de-
viations in opposing directions (mismatch) [14]. Second,
statistically, the magnitude of mismatch increases along
with the shrinkage of device feature size as process control
in the manufacturing phase fails to improve at a rate com-
parable to scaling [12, 1]. As a result, identically designed
CMOS analog circuits are exhibiting a large spread in per-
formance metrics causing severe performance degradation
and even yield loss. For example, even a few millivolts of
mismatch-induced offset voltage can result in zero yield for
high-precision analog-to-digital converters [13].

Mismatch-concerned design optimization is becoming
increasingly important for achieving a high-precision and
low-cost analog design. Two levels of such optimization
techniques can be developed based on established work on
transistor-level mismatch modelling [12] and characteriza-
tion [1, 13]. The first level is the construction of circuit-level
mismatch models which quantitatively predict the influence
of mismatch on circuit performance. Such models enable
fast performance characterization and yield estimation, and

thus can take on the role of Monte-Carlo simulation which
is no longer applicable to complex circuit design due to its
high simulation cost. The second level consists of yield op-
timization in early design stages, which is essential for im-
proving circuit reliability and for reducing product cost.

Due to the complex nonlinear relationship between per-
formance distribution and process variability in CMOS ana-
log circuits, simulation-based statistical techniques are usu-
ally desirable for both levels of the aforementioned de-
sign optimizations. Yet a typical challenge for these tech-
niques is the curse of dimensionality. The accuracy gen-
erally improves with larger amounts of simulations, which,
on the other hand, is bounded by the simulation cost lim-
itation. The solution to this dilemma calls for appropriate
model design and simplification techniques. Even greater
challenges stem from the rapid change in fabrication tech-
nologies which have introduced new random or system-
atic variation-generating mechanisms, such as highly cor-
related random parameters or systematic spatial channel
length variations. Consequently, the choice and composi-
tion of appropriate mathematical techniques for emerging
technology constraints is thrown widely open to question
once again at this point. Mathematical innovations such as
the above, meanwhile, must be matched by thorough ex-
aminations of the dominant physical effects so as to reduce
complexity.

Considerable research has been conducted for the anal-
ysis of process variability and yield-aware analog design.
Methods based on line search iterations involve aggressive
search for the point of higher yield along some specific di-
rection such as yield gradient or the coordinate of the de-
sign space [14]. Such techniques face the problem of find-
ing the optimal search direction which is quite difficult.
Moreover, the greedy algorithm or simulated annealing al-
gorithm usually employed in the search procedure may lead
to a local optimal result. Some methodologies formulate
yield optimization as a multi-objective optimization prob-
lem and propose techniques of generating the yield-aware
pareto fronts [16, 5]. Though such techniques provide more
insight on the trade-off among design criteria, it is difficult
to map multiple objectives directly to yield when complex
correlation mechanisms among the objectives exist. Other
techniques include analyzing a diagnostic circuit to find the
yield factors that can be improved [2], which requires chip
fabrication and thus can not be used in early design itera-
tions due to the attendant high fabrication cost.
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In this paper, a generic two-stage methodology is pro-
posed to (1) construct circuit-level mismatch models which
help predict the influence of mismatch on circuit perfor-
mance and yield; and (2) perform yield optimization using
a yield model constructed based on the yield estimation re-
sults of circuit-level mismatch models. The correlation in-
formation between mismatch parameters is processed with-
out loss in the first stage using statistical techniques such as
Mahalanobis Transformation [8]. Both the mismatch model
and the yield model are constructed using the Response Sur-
face Method [9]. Techniques of identifying critical model
factors are developed to reduce model complexity as well as
the simulation cost for model construction. The two parts of
the proposed work are both compatible with SPICE models,
and can be used either individually or jointly in the early
design stages to guide the design iterations.

This paper is organized as follows. Section 2 presents
some preliminaries. The circuit-level mismatch modelling
and yield optimization techniques are investigated in Sec-
tions 3 and 4, respectively. Section 5 further discusses
the technical feasibility of the proposed method. Section 6
presents experimental results on two representative circuits.
A set of conclusions is drawn in Section 7.

2. Preliminaries
MOS transistor mismatch is generally represented by

threshold voltage mismatch ∆Vth, current factor mismatch
∆β
β and body factor mismatch ∆γ; the first two can be easily

characterized using drain current mismatch measurement on
test chips [1, 10]. A widely accepted and experimentally
verified model for these random variations is a normal distri-
bution with zero mean and a variance dependent on transis-
tor size and mutual distance [12]. The proposed methodol-
ogy considers ∆Vth and ∆β

β as the major mismatch factors,
as they represent the mismatch of parameters that determine
the first-order behavior of transistors. Another reason is that
the extra mismatch caused by ∆γ can be considered as a
further degradation of the Vth matching [10].

Mismatch at different locations is usually considered in-
dependent [14]. Within each transistor pair, ∆Vth and ∆β

β

have been previously considered independent because of
their low correlation [12, 1]. However, recent research
shows that ∆Vth and ∆β

β might be significantly correlated
under some fabrication techniques, such as halo implan-
tation which is widely used in deep-submicron devices to
suppress the short channel effects [4]. Figure 1 shows a
sample distribution of ∆Vth and ∆β

β with halo implanta-
tion, where the correlation coefficient reaches 0.72. This
fact implies that correlation must be considered in circuit-
level mismatch modelling. Principle Component Analysis
(PCA) [7] has been employed to reduce the number of mis-
match parameters as well as eliminate the correlation among
them [11, 6]. But PCA-based methods were developed at
the time of 2µm technology and fail to capture the dynamic
and wide-varying nature of deep-submicron processes [3].
Since research suggests that it is common that only a few
unmatched transistor pairs contribute the most to the per-
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β

with halo implantation

formance deviation [14], the proposed method reduces the
number of mismatch factors by considering only the mis-
match sources that have statistically significant impact on
circuit performance, and decorrelates mismatch factors us-
ing Mahalanobis Transformation. In this way, the error in-
curred by model simplification is much more controllable.

As we have mentioned, mismatch is the dominant factor
of yield loss in CMOS analog circuits. Theoretically, yield
is defined by the following function:

Y (D) =

Z
RT

φ(D, δ)ψ(δ)dδ (1)

where D and δ are respectively the set of designable pa-
rameters and the set of random variations which are domi-
nated by mismatch in CMOS analog circuits; φ(D, δ) is the
probability density function of δ corresponding to design D;
RT is the tolerance region of random variation; ψ(δ) is an
indicator function which maps δ to 1 if δ ∈ RT and to 0
otherwise. For realistic circuits, it is difficult to determine
the analytical form of RT . Thus yield is usually approxi-
mated as the result of direct sampling. Specifically, it can be
computed as the number of chips whose performance values
satisfy the complete set of specifications, divided by the to-
tal number of chips in the lot [14]. The yield optimization
technique proposed in this paper performs yield estimation
according to this realistic definition.

The proposed method can be outlined as follows. For
each transistor pair possibly with potential mismatch, a
small set of mismatch combinations (∆Vth, ∆β

β ) are gener-
ated according to their distributions obtained by mismatch
characterization. Each mismatch combination is inserted in-
dividually into the transistor pair and a performance devia-
tion value is obtained by simulation. A metric is defined
to “combine” all deviation values so that the impact can be
evaluated for each transistor pair considered as a mismatch
source. The mismatch-critical transistor pairs are then deter-
mined and their ∆Vth’s and ∆β

β ’s are considered as factors
of the circuit-level mismatch model. For every performance
parameter, an analytic model in terms of these factors can be
constructed using the Response Surface Method after factor
decorrelation. For any specific design, yield estimation can
be performed using the circuit-level mismatch model given
the statistical characteristics of mismatch, based on which
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a yield model can be constructed in the design space. The
global yield-optimal design can be achieved by refining the
yield model for a small number of iterations.

3. Circuit-level Mismatch Model

The circuit-level mismatch model creates a quantita-
tive relationship between the performance parameters and
a small set of mismatch to which the performance is highly
sensitive (i.e., the set of mismatch-critical transistor pairs).

3.1. Critical Transistor Pair Identification
As defined in [12], mismatch is the process that causes

time-independent random variations in physical quantities
of identically designed devices. Thus there is no need to
examine all possible transistor pairs in the circuit. The pro-
posed method groups all transistors according to their ge-
ometry dimensions. Each pair of transistors within the same
group is considered as a mismatch source candidate and
added into the candidate set S. Since the number of tran-
sistors with the same dimensions is usually far less than the
total number of transistors in practical circuits, this strategy
can reduce the size of the candidate set S to a great extent.

For any mismatch source candidate Mn in S, where
1 ≤ n ≤ |S|, a small set of k mismatch combinations
(∆Vth, ∆β

β )(i) (1 ≤ i ≤ k) can be generated as follows

∆V
(i)

th = σ[∆Vth] · x(i)
1 (2)

∆β

β

(i)

= σ[
∆β

β
] · (rvβ · x(i)

1 +
q

1 − r2
vβ · x(i)

2 ) (3)

where σ[∆Vth] and σ[∆β
β ] denote standard deviations of

∆Vth and ∆β
β , and rvβ denotes the correlation coefficient

between them. These values can be obtained through char-
acterization. x

(i)
1 and x

(i)
2 are sample values respectively

generated from two independent normal distributions both
with zero mean and a variance of 1/2. Since all the original
statistical characteristics of the characterized data are pre-
served, this set of mismatch combinations accurately repre-
sents the practical mismatch distributions.

The k mismatch combinations are individually inserted
into the corresponding transistor pair and simulations are
performed k times. For any specific performance parame-
ter P of interest, k values, P (j)[Mn] (1 ≤ j ≤ k) can be
obtained through simulation. Then the influence of the cor-
responding mismatch source candidate on performance P
can be evaluated with the metric defined by equation (4)

∆P [Mn] =
1

k
·

kX
j=1

(P (j)[Mn] − Pnominal)
2 (4)

where Pnominal is the nominal value of performance pa-
rameter P . This metric reflects the average spread of per-
formance P due to the mismatch of transistor pair Mn.

For each Mn in S, its corresponding ∆P [Mn] can be
calculated. Then the set Z of mismatch-critical transistor
pairs for performance P can be determined by examining all
elements of S in descending order of ∆P and including the

ones whose impact exceeds a ratio of the sum of the impact
of the remaining unexamined ones. Formally all transistor
pairs that are included in Z satisfy the following equation

∆P [Ml] ≥ ε ·
X

Mh∈S

∆P [Mh], ∀Ml ∈ Z (5)

ε is a predefined ratio dependent on the level of targeted
accuracy. Since the mismatch influence of critical transistor
pairs is usually much greater than that of the non-critical
ones, the differentiation result is quite insensitive to the
value of ε once it exceeds some threshold value. There-
fore a high value for ε is perfectly adequate in screening out
from the candidate set the transistor pairs whose mismatch
has dominant effects on the performance.

3.2. Model Construction
A quantitative model predicting the value of performance

parameters of interest in terms of mismatch can further be
constructed using the Response Surface Method (RSM) [9],
which models the response parameter through a polynomial
representation of several influencing factors. The basic idea
of model construction with RSM consists of designating de-
sign points (the sample values of factors in the experimenta-
tion), performing experimentations at design points and cal-
culating model parameters from the results of experimenta-
tion using regression techniques.

In the proposed methodology, the performance parame-
ter of interest is considered as the response parameter. The
mismatch parameters ∆Vth and ∆β

β of every transistor pair
in set Z obtained in Section 3.1 are considered as the influ-
encing factors since they are dominant with respect to the
performance deviation of the circuit. Usually, a first or-
der (linear) model or a second order (quadratic) model is
preferred in RSM. Since the influence of mismatch on per-
formance is often approximately symmetric to the neutral
line (i.e., the set of points where the effects of the variations
of two transistors cancel each other, resulting in no mis-
match) [14], a quadratic model approximates practical real-
ities sufficiently closely and accurately, while being compu-
tationally affordable. We employ it in the proposed method,
therefore.

The positions of design points are usually chosen sym-
metrically to the design center (the mismatch-free point in
this specific case), so that an orthogonal design is obtained
to ensure an unbiased model. In order to make such a de-
sign in accordance with the practical distributions of influ-
encing factors, it is desirable to have all influencing factors
independent of each other. As mentioned in Section 2, mis-
match parameters at different locations are considered inde-
pendent, but the correlation between ∆Vth and ∆β

β of the
same transistor pair can not be ignored. Thus for each ele-
ment in Z , its ∆Vth and ∆β

β need to be transformed to two
new factors independent of each other, before they are used
in model construction. Mahalanobis Transformation [8] is
employed to perform this task, whose steps are concisely
presented as follows. For any transistor pair, the variance-
covariance matrix Σ of its ∆Vth and ∆β

β can be easily gen-
erated from characterization, as shown in equation (6).
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Σ =

2
4 σ2[∆Vth] rvβ · σ[∆Vth] · σ[∆β

β
]

rvβ · σ[∆Vth] · σ[∆β
β

] σ2[∆β
β

]

3
5 (6)

As a symmetric matrix, Σ can be written as equation (7)
using Spectral (Jordan) Decomposition.

Σ = ΓΛΓT (7)

Λ = diag(λi) is a diagonal matrix with its diagonal el-
ements being the eigenvalues λi of Σ. Γ is an orthogonal
matrix whose columns are the normalized eigenvectors of
Σ. Since Σ is positive semi-definite, its inverse square root
is

Σ−1/2 = ΓΛ−1/2ΓT (8)

where Λ−1/2 = diag(1/
√

λi). With (8), it is easy to obtain,
using equation (9), two new factors which have been proven
independent of each other [8].2

4X1

X2

3
5 = Σ−1/2(

2
4∆Vth

∆β
β

3
5 −

2
64

∆V th

∆β
β

3
75) (9)

Since the mean of mismatch parameters, ∆V th and ∆β
β ,

are equal to zero [12], (9) can be rewritten as2
4X1

X2

3
5 = Σ−1/2(

2
4∆Vth

∆β
β

3
5) = ΓΛ−1/2ΓT (

2
4∆Vth

∆β
β

3
5) (10)

For each mismatch-critical transistor pair Mn (1 ≤ n ≤
|Z|), a pair of independent factors (X1,n, X2,n) can be ob-
tained using Mahalanobis Transformation. Thus there exist
a total of 2|Z| independent factors in the model.

A central composite design technique employing a frac-
tional factorial design [9] can be used to choose the design
points over the 2|Z| factors for model construction. In order
to reduce the complexity of computing model parameters in
later steps, all design points are coded into the ±1, 0 or ±κ,
where κ is a value dependent on the number of factors [9].

The quadratic model can be written in matrix form
P = c0 + xT c1 + xT c2 x (11)

where x are the influencing factors; P the performance pa-
rameter of interest; c0, c1 and c2 respectively the unknown
model parameters for zero order, first order and second or-
der terms.

After SPICE simulations are performed at the design
points, a set of equations can be constructed using the model
expression in (11), as shown in the matrix form

P = S · c (12)

where the column vector P consists of the set of values of
the performance parameter P obtained from the simulations
at the design points; S, a matrix whose jth row is the design
setting of the jth design point; the column vector c, the un-
known model parameters. Using least squares optimization,
the estimate values of the model parameters are given by

c = (ST S)−1ST P (13)

with which the analytic form of the model can be finally
obtained. The procedures for model construction are sum-
marized in Algorithm 1.

Algorithm 1 Circuit − level mismatch model
construction

Identify mismatch-critical transistor pairs
For each mismatch-critical transistor pair, transform its
∆Vth and ∆β

β
to two new independent factors using Ma-

halanobis Transformation
Designate design points over all model factors using cen-
tral composite design
Perform SPICE simulations at all design points
Compute model parameters using least squares optimiza-
tion

3.3. Model-based Performance Characteri-
zation

Once a quadratic model as described in (11) has been
identified, the expected values and variances of deviations
of the performance parameters of interest can be directly
calculated. The stationary point x0 of the response surface
of this model (the point at which the slope of the response
surface is zero when taken in all directions) can be calcu-
lated, using a differentiating method, as

x0 = −c2
−1c1

2
(14)

If we substitute u = x − x0 for x in the model of (11), it
can be transformed to a new form without first-order terms,
as shown in (15)

P = p0 + uT c2 u (15)

The expected value and variance of the performance can
be computed based on this simplified model expression.
Since u is obtained through Mahalanobis Transformation
of the multivariate normal distribution of mismatch param-
eters followed by a linear shifting, it obeys a multivariate
standard normal distribution. Let its expectation E [u] = µ
and variance-covariance matrix D[u] = Σu. Then the ex-
pectation of performance P can be computed as [15]

E [P ] = p0 + E [uT c2 u]

= p0 + tr[c2Σu] + µT c2 µ (16)

where tr[] denotes the trace of a matrix. The variance of P
can be computed as [15]

σ2[P ] = σ2[uT c2 u]

= 2tr[c2Σu]2 + 4µT c2Σuc2 µ (17)

Since the elements in u are independent of each other, their
variance-covariance matrix Σu is a diagonal matrix, which
simplifies the matrix computation greatly.

4. Yield Optimization
The circuit-level mismatch model can be further used in

yield optimization in early design stages, as its fast yield
prediction capability provides the possibility of constructing
an analytical yield model based on which the global yield-
optimal point can be directly explored. For any chip with
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its mismatch data characterized, its performance value can
be predicted by the model. If the complete set of predicted
performance specifications is satisfied, it is classified as a
good chip. The yield is then computed as the fraction of
good chips in the entire lot of chips of the same design. For
any specific design (which corresponds to a point D in the
design space F ), a corresponding yield Y can be predicted
using the circuit-level mismatch models constructed at D.
Hence a quadratic yield model in terms of the designable
parameters can be constructed in the original design space
F0 using RSM again. The model construction procedure is
identical to that of the circuit-level mismatch model detailed
in Section 3.2, except that Mahalanobis Transformation is
no longer needed in this level of model construction as the
designable parameters in the yield model are independent of
each other. The point D0 that corresponds to the maximum
of the yield model in F0 can be easily computed using nu-
merical techniques. Though this point can not be directly
used as the true optimal design due to the model inaccuracy,
it can be considered as a very good approximation which
is sufficiently close to the true optimal design. Since RSM
theory indicates that the response surface can be more accu-
rately modelled as a quadratic function at the neighborhood
of the maximum or minimum point, a better approximation
point D1 of the true optimal design can further be obtained
by constructing a new and refined yield model in the small
neighbouring area F1 of D0 and finding its maximum point.
The new search space F1 can be specified by taking D0 as
the center of F1 and shrinking the size of the original search
space by a ratio α, where 0 < α < 1. In the same way,
further search can be performed within a smaller neighbor-
hood of D1 to obtain an even better approximation point.
A small number of iterations suffices for the approximation
point to approach the true optimal design due to the quasi-
exponential shrinking speed of the search space size. The
iteration stops when the distance between two consecutive
approximation points falls below some predefined threshold
(e.g. the change in transistor size is less than the feature size
of the fabrication process).

In order to avoid reaching a local optimal point during
the optimization iteration, the shrinkage speed of the search
space needs to be correctly determined for each iteration.
A fixed shrinkage ratio can be easily implemented, but it
does not incorporate the information about model quality
and thus is not always appropriate. We propose a flexi-
ble shrinkage ratio dependent on the accuracy of the yield
model of the previous iteration. The R2

A statistic (which is a
value between 0 and 1) can be computed for the yield model
in each iteration to reflect how well the model can explain
the actual yield response surface. The shrinkage ratio α for
the next iteration is hence defined as α = 1 − 0.5 ∗ R2

A. If
the model quality is very good (i.e. R2

A is close to 1), the
shrinkage ratio can approach 1/2; otherwise a larger value
is employed to ensure that the global optimal point is con-
tained in the new search space.

A pre-analysis of circuit characteristics at the beginning
of each iteration can make the yield optimization procedure
more efficient. We have observed that the designable pa-

rameters that have large influence on the nominal values
of performance are also critical to yield, as such parame-
ters are decisive of the size of performance tolerance win-
dows. Such an observation provides the possibility of sim-
plifying the yield model as well as reducing simulation cost
by only incorporating critical designable parameters in the
yield model. At the beginning of each iteration, two sim-
ulations are performed for each designable parameter re-
spectively at the lower bound and upper bound values of
its corresponding search space. The difference between the
nominal performance values at these two points is computed
to indicate the influence of the designable parameter under
consideration. Hence, for each performance, the designable
parameters that are non-critical to it can be determined using
the same differentiation strategy as employed in the iden-
tification of mismatch-critical transistor pairs described in
Section 3.1. The designable parameters that are non-critical
to all performances can be dropped from the yield model
as they have little influence on yield. As a result, the di-
mension of the search space can be continuously decreased
during the optimization iterations, which reduces the simu-
lation cost drastically. The overall procedure for yield opti-
mization is summarized in Algorithm 2.

Algorithm 2 Y ield optimization

repeat
Identify yield-critical designable parameters as yield
model factors
Designate design points for yield model construction in
the search space over model factors
Predict the yield at each design point using the circuit-
level mismatch model constructed by Algorithm 1
Construct a quadratic yield model using RSM
Compute optimal point using numerical technique
Compute R2

A and the shrinkage ratio α to specify the
search space for the next iteration

until the distance between the current optimal point and
the previous optimal point is less than the threshold
return current optimal point

5. Technical Feasibility

The run time complexity of the proposed methodology
is dominated by SPICE simulation. The number of sim-
ulations increases in line with the number of mismatch-
critical transistor pairs to be considered in the circuit-level
mismatch model and that of designable parameters to be
considered in the yield model. With the identification
of mismatch-critical transistor pairs and yield-critical des-
ignable parameters, the simulation cost can be controlled
in an affordable level, making the proposed methodology
much more efficient than Monte-Carlo simulation. The re-
duction on the simulation count has no negative effect on
the accuracy of the proposed method as the influence of
dominant factors is thoroughly incorporated. Performance
characterization and yield prediction can be performed ef-
ficiently because only computations over the circuit-level
mismatch model are employed and no further simulations
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Table 1. Circuit-level mismatch modelling for the three-stage operational amplifier
Performance

Simplified Model Complex Model Monte Carlo Simulation

# simulationsCrit. Pairs Mean St. Dev. Yield # simulations Mean St. Dev. Yield # simulations Mean St. Dev. Yield

Ao (M1,M2), (M3,M4)

(M1,M2), (M3,M4)

(M1,M2), (M3,M4)

(M1,M2), (M3,M4)

(M1,M2), (M3,M4)

GBW

Power

CMRR
ro

30

1435 Ω

80.5 db

2.31 mw

91.3 db

4.42 MHz 1.33 MHz

0.49 mw

83.9 db

407 Ω

73.6 db

69.2%

84.7%

51.7%

76.8%

57.1%

51

4.42 MHz

2.31 mw

91.3 db

1459 Ω

80.5 db

1.33 MHz

0.49 mw

83.7 db

413 Ω

74.0 db 55.2%

68.8%

84.7%

52.1%

78.0%

10K

4.44 MHz

2.31 mw

91.5 db

80.9 db

1531 Ω

1.23 MHz

0.43 mw

85.7 db

435 Ω

76.4 db

62.0%

82.4%

56.4%

83.7%

58.9%

are needed. The proposed yield optimization technique can
ensure a quick convergence to the optimal point as such a
point is obtained by direct computation over an analytical
model rather than by a direction-based search which may
end at some locally optimal point. The proposed method
can be completely embedded into an automated design tool
and widely used in constraint-driven design.

6. Experimental Results
The proposed methodology has been tested by experi-

mentation on two circuits, namely, a three-stage operational
amplifier and a folded cascode amplifier. For both circuits,
the experiment is designed to firstly verify the effectiveness
of the circuit-level mismatch modelling technique proposed
in Section 3 on the first-cut design and then that of the yield
optimization technique proposed in Section 4.

6.1. Three-Stage Operational Amplifier
The schematic of the three-stage operational amplifier

is shown in Figure 2. For each of the 5 important perfor-
mance parameters (Ao, ro, CMRR, Power, GBW ), its
mismatch-critical transistor pairs have been identified and a
circuit-level mismatch model based on them has been con-
structed. For purposes of comparison, a 10K-run Monte
Carlo simulation has been performed as a baseline case for
the evaluation of model accuracy, and a complex model
based on all transistor pairs (without identifying mismatch-
critical transistor pairs) has also been implemented to evalu-
ate the effectiveness of the mismatch-critical pair identifica-
tion technique presented in Section 3.1. Table 1 presents the
experimental results for the first-cut design circuit. For each
performance parameter, its mean, standard deviation and in-
dividual yield are obtained using all of the three methods.
The number of simulations are also listed in Table 1.

Transistor pairs (M1, M2) and (M3, M4) are critical
for all performance parameters at the first-cut design. The
comparison between the simplified and the complex model

VDD

VoutVin(+)Vin(-)
M1 M2

M3 M4 M6

M8

M9M7M5M10

GND

Figure 2. Three-stage operational amplifier

shows that these two models are at the same level of accu-
racy yet the construction of the simplified model requires
fewer simulations than that of the complex one. This ob-
servation proves that the performance deviations are domi-
nated by the mismatch-critical transistor pairs, and that the
identification technique in Section 3.1 can greatly reduce the
simulation cost without impairing the model accuracy. The
comparison to the baseline results obtained by Monte-Carlo
simulation shows that both the simplified and the complex
model achieve sufficiently accurate predictions on the char-
acteristics of performance variations and yields. However,
the computational cost of the simplified model is far less
than that of the one based on Monte-Carlo simulation. Con-
sidering that the number of simulations for Monte-Carlo
simulation increases very quickly with the size of the cir-
cuit, the cost reduction achieved by the proposed method
will be even greater for large circuits.

Table 2 presents the yield optimization results. Columns
2-4 show respectively the number of simulations, the model
R2

A statistics and the achieved yield in each iteration. Since
the yield model is quite accurate in each iteration, only two
iterations are needed and a high yield is achieved. It can
also be observed that the number of simulations needed in
each iteration decreases very quickly due to the selection of
yield-critical designable parameters.

6.2. Folded Cascode Amplifier
The schematic of the folded cascode amplifier is shown

in Figure 3. The experimental setting is the same as in Sec-
tion 6.1. The results for the first-cut design obtained by
the three methods are shown in Table 3. Transistor pairs
(M1, M2), (M3, M4), (M5, M6) and (M9, M10) are de-
termined to be critical for all performance parameters at the
first-cut design. The two modelling techniques still pro-
duce results that are at the same level of accuracy, which
further confirms the effectiveness of the technique proposed
in Section 3.1. Either model accurately predicts the practi-
cal performance distribution characterized by Monte-Carlo
simulation. Specifically, for power consumption, the three
methods reach almost identical results. Yet in terms of sim-
ulation cost, the advantage of the simplified model over the
other two methods is even more evident than that in Section
6.1, as the folded cascode amplifier contains more identi-
cally designed transistor pairs.

Table 2. Yield optimization for the three-stage
operational amplifier

opamp

2nd iteration
1st iteration

first-cut design

95.7%66
94.6%201
49.1%

overall yield# simulations

0.98
0.94

R2
A
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Table 3. Circuit-level mismatch modelling for the folded cascode amplifier
Performance

Simplified Model Complex Model Monte Carlo Simulation

Crit. Pairs Mean St. Dev. Yield # simulations Mean St. Dev. Yield # simulations Mean St. Dev. Yield

Ao (M1,M2), (M3,M4)
(M5,M6),(M9,M10) 60.5 db 54.6 db 75.3% 60.5 db 54.5 db 75.0%

10K

60.1 db 55.5 db 68.4%

ro
(M1,M2), (M3,M4)
(M5,M6),(M9,M10) 3.56 MΩ 1.80 MΩ 76.1% 3.57 MΩ 1.79 MΩ 76.5% 3.39 MΩ 2.00 MΩ 68.3%

CMRR (M1,M2), (M3,M4)
(M5,M6),(M9,M10) 97.4 db 85.4 db 74.8% 98.7 db 85.6 db 74.3% 95.7 db 84.1 db 66.0%

Power (M1,M2), (M3,M4)
(M5,M6),(M9,M10) 302.3 µw 0.61 µw 99.9% 302.3 µw 0.61 µw 99.9% 302.3 µw 0.57 µw 99.9%

GBW (M1,M2), (M3,M4)
(M5,M6),(M9,M10) 53.6 MHz 4.34 MHz 90.5% 53.5 MHz 4.43 MHz 90.1% 53.7 MHz 3.96 MHz 91.3%

57 299

# simulations

The yield optimization results for the folded cascode am-
plifier are presented in Table 4. It can be observed that only
3 iterations are needed and a high yield is quickly achieved.

7. Conclusion
In this paper, a two-stage methodology is proposed to

contribute a mismatch-concerned design optimization tech-
nique for CMOS analog circuits. The main contributions
of this work include a method for constructing a circuit-
level model to predict mismatch impact on circuit behavior,
and a fast yield optimization technique to guide the early
design iterations. The proposed methodology can be em-
bedded into EDA tools to help performance characteriza-
tion and yield-aware gate-sizing optimization. Experiments
show that the circuit-level mismatch modelling technique
is accurate enough while being much more efficient than
Monte-Carlo simulation widely employed in practical de-
signs, and that the proposed yield optimization technique
can reach the optimal design efficiently with rather low sim-
ulation cost.

References
[1] J. Bastos, M. Steyaert, R. Roovers, P. Kinget, W. Sansen,

B. Graindourze, A. Pergoot, and E. Janssens. Mismatch char-
acterization of small size MOS transistors. IEEE ICMTS,
pages 271–276, 1995.

[2] J. Bordelon, B. Tranchina, V. Madangarli, and M. Craig. A
strategy for mixed-signal yield improvement. IEEE Design
and Test of Computers, 19:12–21, 2002.

[3] J. Chen, M. Orshansky, C. Hu, and C. Wan. Statistical circuit
characterization for deep-submicron CMOS designs. IEEE
ISSCC, pages 90–91, 1998.

[4] J. Croon, E. Augendre, S. Decoutere, W. Sansen, and
H. Maes. Influence of doping profile and halo implantation

M9 M10

M7 M8

M5 M6

M3 M4

M1 M2

M15

M16

M17

M13 M14

M11 M12

M18

Vout

Vin(+)Vin(-)

VDD

GND

Figure 3. Folded cascode amplifier

on the threshold voltage mismatch of a 0.13 µm CMOS tech-
nology. ESSDERC, pages 579–582, 2002.

[5] B. De Smedt and G. Gielen. HOLMES: capturing the yield-
optimized design space boundaries of analog and RF inte-
grated circuits. IEEE DATE, pages 256–261, 2003.

[6] E. Felt, S. Zanella, C. Guardiani, and A. Sangiovanni-
Vincentelli. Hierarchical statistical characterization of
mixed-signal circuits using behavioral modeling. ACM/IEEE
ICCAD, pages 374–380, 1996.

[7] B. Flury. Common principle components and related multi-
variate models. Wiley, New York, 1988.

[8] W. Härdle and L. Simar. Applied multivariate statistical
analysis. Springer, New York, 2003.

[9] A. Khuri and J. Cornell. Response surface: designs and anal-
yses. Marcel Dekker Inc., New York, 1996.

[10] P. Kinget and M. Steyaert. Analog VLSI integration of mas-
sive parallel signal processing systems. Kluwer Academic
Publishers, Boston, 1997.

[11] C. Michael and M. Ismail. Statistical modeling of device
mismatch for analog MOS integrated circuits. IEEE J. Solid-
State Circuits, 27:154–166, 1992.

[12] M. Pelgrom, A. Duinmaijer, and A. Welbers. Matching
properties of MOS transistors. IEEE J. Solid-State Circuits,
24:1433–1440, 1989.

[13] M. Quarantelli, S. Saxena, N. Dragone, J. Babcock,
C. Hess, S. Minehane, S. Winters, J. Chen, H. Karbasi, and
C. Guardiani. Characterization and modeling of MOSFET
mismatch of a deep submicron technology. IEEE ICMTS,
pages 238–243, 2003.

[14] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H. Graeb,
and K. Antreich. Mismatch analysis and direct yield op-
timization by spec-wise linearization and feasibility-guided
search. ACM/IEEE DAC, pages 858–863, 2001.

[15] G. Seber. Linear regression analysis. Wiley, New York,
1977.

[16] S. Tiwary, P. Tiwary, and R. Rutenbar. Generation of yield-
aware pareto surfaces for hierarchical circuit design space ex-
ploration. ACM/IEEE DAC, pages 31–36, 2006.

Table 4. Yield optimization for the folded cas-
code amplifier

cascode

3rd iteration
2nd iteration
1st iteration

first-cut design

95.7%244
89.3%793
58.0%

overall yield# simulations

98.7%92 0.98
0.87
0.90

R2
A
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